
z/OS
Version 2 Release 4

XL C/C++
Compiler and Runtime Migration Guide
for the Application Programmer

IBM

GC14-7306-40

Note

Before using this information and the product it supports, read the information in “Notices” on page
127.

This edition applies to Version 2 Release 4 of z/OS (5650-ZOS) and to all subsequent releases and modifications until
otherwise indicated in new editions.

Last updated: 2020-12-14
© Copyright International Business Machines Corporation 1996, 2019.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this document...xi
z/OS XL C/C++ on the World Wide Web.. xix

Where to find more information...xix
Technical support.. xix
How to send your comments to IBM...xix

If you have a technical problem... xx

Part 1. Introduction... 1

Chapter 1. New migration issues for z/OS V2R4 XL C/C++...3

Chapter 2. Program migration checklists.. 5
Before you start your migration... 5
When you are compiling code.. 6
When you are binding program objects or load modules..7
When you are running an application ..7
Tools that facilitate your migration.. 9

The Edge Portfolio Analyzer..9
Applicability of product information.. 9

Part 2. Migration of pre-OS/390 C/C++ applications to z/OS V2R4 XL C/C++.......... 11

Chapter 3. Source code compatibility issues with pre-OS/390 C/C++ programs................................... 13
Removal of IBM Open Class Library support...13
Source code modifications necessitated by changes in runtime library.. 13

The #pragma runopts directive..13
Resource allocation and memory management issues.. 13

The sizeof operator applied to a function return type... 14
A user-defined global new operator and array new.. 14

Addressing incompatibilities..14
C/370 V2 main program and main entry point.. 14
Pointer incompatibilities...14

Data type incompatibilities.. 15
Assignment restrictions for packed structures and unions...15
DSECT header files and packed structures..15

Changes required by programs with interlanguage calls.. 15
Explicit program mask manipulations..15
Assembler source code changes in System Programming C (SPC) applications built with

EDCXSTRX..16
Internationalization incompatibilities..16

Support of alternate code points..16

Chapter 4. Compile-time issues with pre-OS/390 C/C++ programs..17
Changes in compiler listings, messages, and return codes.. 17

Macro redefinitions might result in severe errors..17
Changes in compiler options..17

Compiler options that are no longer supported...17
Compiler options that were introduced in OS/390 C/C++ or later.. 18
Changes in compiler option functionality...18

Changes that affect compiler invocations... 21

 iii

IPA compiler option and very large applications... 21
Customized JCL and the CXX format..21
CBCI and CBCXI procedures in JCL... 21

Changes that affect SYSLIB DD cards..21
Change in SCLBH logical record length ... 21

Chapter 5. Bind-time migration issues with pre-OS/390 C/C++ programs... 23
Library release level in use...23
Binder invocation changes... 25

Impact of changes to CC EXEC invocation syntax... 25
Changes due to customizations of the runtime environment... 25

User-developed exit routines... 25
Incompatibilities in external references..26
Requirements for relinking C/370 modules that invoke Debug Tool..26
C/370 modules with interlanguage calls (ILC).. 26

Interlanguage calls between assembler and PL/I language modules..26
Function calls between C and Fortran modules.. 26
Function calls to and from COBOL modules.. 27

Chapter 6. Runtime migration issues with pre-OS/390 C/C++ applications... 31
Retention of pre-OS/390 runtime behavior...31
Runtime library messages..31

Return codes and messages...31
Error conditions that cause runtime messages... 32
Prefixes of perror() and strerror() messages..32
Language specification for messages.. 32
User-developed exit routines... 32

Changes that affect customized JCL procedures.. 32
Changes in data set names...32
Arguments that contain a slash..32
Differences in standard streams.. 33
Dump generation.. 33

Changes in runtime option specification... 33
Runtime options lists.. 33
Obsolete runtime options...33
Return codes for abnormal enclave terminations... 33
Abnormal terminations and the TRAP runtime option.. 33
Default heap allocations...34
HEAP parameter specification..34
Default stack allocations.. 34
STACK parameter specification.. 34
XPLINK downward-growing stack and the THREADSTACK runtime option................................. 34

Runtime library compatibility issues with pre-OS/390 applications..34
Changes to the putenv() function and POSIX compliance...35
UCMAPS and UCS-2 and UTF-8 converters... 35
Common library initialization compatibility issues with C/370 modules......................................35
Internationalization issues in POSIX and non-POSIX applications.. 36

Hardware and OS exceptions...37
Decimal overflow exceptions..37
SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 exceptions... 37
Unexpected SIGFPE exceptions...37

Resource allocation and memory management migration issues..37
The realloc() function..38

Chapter 7. Input and output operations compatibility... 39
Migration issues when opening pre-OS/390 files... 39
Migration issues when writing to pre-OS/390 files... 39
Changes in DBCS string behavior...41

iv

Changes in stdout and stderr file positioning.. 41
Behavior changes when closing and reopening ASA files...42
Changes in values returned by the fldata() function... 43
VSAM I/O changes..43

Change in allocation of VSAM control blocks and I/O buffers...43
Terminal I/O changes... 43

Part 3. Migration of OS/390 C/C++ applications to z/OS V2R4 XL C/C++.................45

Chapter 8. Source code compatibility issues with OS/390 programs..47
Overflow processing and code modifications..47
References to class libraries that are no longer shipped..47

Chapter 9. Compile-time migration issues with OS/390 programs... 49
Changes in compiler listings and messages.. 49

Debug format specification.. 49
Language specification for compiler messages... 49
Optimization level mapping and listing content.. 49
Macro redefinitions and error messages..50

Changes in compiler options..50
Compiler options that are no longer supported...50
ARCHITECTURE compiler option... 51
ARGPARSE compiler option with Metal..51
ASCII compiler option.. 51
CHECKOUT(CAST) compiler option..51
DIGRAPH compiler option.. 52
ENUMSIZE compiler option..52
INFO compiler option... 52
INLINE compiler option..52
IPA(LINK) compiler option... 52
LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2) compiler option and macro

redefinitions...53
LANGLVL(EXTENDED) compiler option and macro redefinitions.. 54
LANGLVL(LONGLONG) compiler option... 54
LOCALE compiler option... 54
M compiler option... 54
OPTIMIZE compiler option...55
NORENT compiler option..55
ROSTRING compiler option.. 55
ROCONST compiler option... 56
STATICINLINE compiler option.. 56
SQL compiler option and SQL EXEC statements..56
TARGET compiler option...56
TEST compiler option..56
TUNE compiler option...56

Changes in IBM data set names.. 56
Introduction of 1998 Standard C++ support...57
Changes that affect performance and optimization..57

Addition of the #pragma reachable and #pragma leaves directives..57
Changes that affect customized JCL procedures.. 57

Potential increase in memory requirements..57
JCL CBCI and CBCXI procedures and the variable CLBPRFX..57
Syntax to invoke the CC command...57

Removal of Model Tool support... 58

Chapter 10. Bind-time migration issues with OS/390 C/C++ programs..59
Reentrant variables when the compiler option is NORENT.. 59

 v

Chapter 11. Runtime migration issues with OS/390 C/C++ applications.. 61
Retention of OS/390 runtime behavior..61

Changes to the putenv() function and POSIX compliance...61
Debug format and translation of the c89 -g flag option..61
Language Environment customization issues... 62
Change in allocation of VSAM control blocks.. 62

Chapter 12. Migration issues resulting from class library changes between OS/390 C/C++
applications and Standard C++ library...63
Function calls to different libraries.. 63
Removal of IBM Open Class Library support...63
Removal of SOM support..63
Removal of Database Access Class Library utility...63
Migration of programs with calls to UNIX System Laboratories I/O Stream Library functions......... 63

Part 4. Migration of earlier z/OS C/C++ applications to z/OS V2R4 XL C/C++.......... 65

Chapter 13. Source code compatibility issues with earlier z/OS C/C++ programs..................................67
Function calls to different libraries.. 67
References to class libraries that are no longer shipped..67
Migration from UNIX System Laboratories I/O Stream Library to Standard C++ I/O Stream

Library..67
Standard C++ compliance compatibility issues.. 68
Use of XL C/C++ library functions.. 68

Timing of processor release by the pthread_yield() function..68
New information returned by the getnameinfo() function...68
Feature test macros and system header files..69
Potential need to include _Ieee754.h..69
New definitions exposed by use of the _OPEN_SYS_SOCK_IPV6 macro..................................... 69
Required changes to fprintf and fscanf strings %D, %DD, and %H.. 69
Changes to the putenv() function and POSIX compliance...70
Required changes to fprintf and fscanf strings due to new specifiers for vector types................70

C99 support of long long data type..70
Use of pragmas...71

Application of #pragma unroll() as of z/OS V1R7 XL C/C++..71
Unexpected C++ output with #pragma pack(2).. 71

Virtual function declaration and use..71

Chapter 14. Compile-time migration issues with earlier z/OS C/C++ programs..................................... 73
Changes in compiler listings, messages, and return codes.. 73

Appearance of compiler substitution variables... 73
Corrections in escape sequence encoding.. 74
Function offsets in source listing..74
Diagnostic refinement in identification of linkage issues (C++ only).. 74
References to UNIX System Services file names...75
Non-compliant array index raises an exception.. 75
Unexpected name lookup error messages with template use..75
Width of mnemonic in assembly listings..76
Macro redefinitions and error messages..76

Changes in compiler option functionality.. 76
Option behavior change when processing multiple suboptions... 76
CHECKOUT compiler option... 76
CMDOPTS compiler option and conflict resolution..77
DFP compiler option and earlier floating-point applications.. 77
DSAUSER compiler option.. 77
ENUMSIZE(SMALL) and protected enumeration types in system header files............................ 77

vi

FLAG compiler option... 78
FLOAT(AFP) suboptions for applications that access CICS data...78
GENASM compiler option... 78
GONUMBER compiler option and LP64 support..78
IPA compiler option.. 78
LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2) compiler option and macro

redefinitions...78
LANGLVL(EXTC1X) compiler option... 79
LANGLVL(EXTENDED) compiler option and macro redefinitions.. 79
LANGLVL(EXTENDED0X) compiler option..79
LOCALE compiler option... 79
M compiler option... 80
RESTRICT option...80
SEVERITY option...80
SQL compiler option and SQL EXEC statements..80
TARGET compiler option...80
TEMPLATEDEPTH compiler option...80

Changes that affect compiler invocations... 81
Changes that affect use of the c89 command... 81
Changes that affect use of the xlc utility..82

Changes that affect JCL procedures..82
User-defined conversion tables and iconv() functions.. 83
ILP32 compiler option and name mangling...83
IPA(LINK) compiler option and very large applications.. 83
IPA(LINK) compiler option and exploitation of 64-bit virtual memory...83

JCL that runs pre-z/OS V1R5 C/C++ programs... 84
Compiler options that manage Standard C++ compliance... 84
Impact of recompiling applications that include <net/if.h> with the

_XOPEN_SOURCE_EXTENDED feature test macro..84
Impact of recompiling applications that include the pselect() interface... 84
Impact of recompiling with the _OPEN_SYS_SOCK_IPV6 macro ..84
Impact of recompiling code that relies on math.h to include IEEE 754 interfaces........................... 85

Chapter 15. Bind-time migration issues with earlier z/OS C/C++ programs... 87
Unexpected "missing symbol" error (C++ only).. 87
Program modules from an earlier release... 87

Namespace pollution binder errors..87
c89 COMPAT binder option default and programs from an earlier release.................................. 88

Alignment incompatibilities between object models..88
Alignment incompatibilities between XL C and XL C++ output with #pragma pack(2)............... 88

Debug format and c89 -g flag option translation.. 88
argc argv parsing support for Metal C programs... 88

Chapter 16. Runtime migration issues with earlier z/OS C/C++ applications... 91
Earlier AMODE 64 applications..91

HEAPPOOLS runtime option no longer ignored in all AMODE 64 applications.............................91
Customized runtime libraries...91
Failure of authentication process.. 91
Retention of previous runtime behavior.. 92

Unexpected output from fprintf() or fscanf()... 92
IEEE754 math functions...93
Internal timing algorithm specification..93
Daylight saving time definition... 93
Changes to the putenv() function and POSIX compliance...93

Internationalization issues...94
Default daylight saving time change.. 94
EEC default currency update.. 94
Movement of LOCALDEF utilities to new data sets..94

 vii

Changes in math library functions... 95
Changes in floating-point support... 96

Hexadecimal floating-point notation... 96
Floating-point special values... 97

Changes in allocation of VSAM control blocks.. 97
Changes to st_mode attribute of AF_UNIX socket files.. 97
Changes to strfmon() output..97
Changes to structure t_opthdr in xti.h... 98
Changes to getting group or user database entry... 98
Removal of conversion table source code... 98

Part 5. ISO Standard C++ compliance migration issues... 99

Chapter 17. Language level and your Standard C++ compliance objectives...101

Chapter 18. Changes that affect Standard C++ compliance of language features................................103
Unqualified name lookups and the using directive... 103
Order of destruction for statically initialized objects.. 103
Implicit integer type declarations... 104
Scope of for-loop initializer declarations...104
Visibility of friend declarations.. 105
Migration of friend declarations in class member lists... 105
cv-qualifications when the thrown and caught types are the same...105
Compiler options that are introduced in C++11 standard.. 106

LANGLVL(AUTOTYPEDEDUCTION) compiler option (C++11)... 106
LANGLVL(C1XNORETURN) compiler option (C++11)..107
LANGLVL(C99LONGLONG) compiler option (C++11).. 107
LANGLVL(C99PREPROCESSOR) compiler option (C++11)..107
LANGLVL(CONSTEXPR) compiler option (C++11)... 107
LANGLVL(DECLTYPE) compiler option (C++11)...107
LANGLVL(DEFAULTANDDELETE) compiler option (C++11)...107
LANGLVL(DELEGATINGCTORS) compiler option (C++11).. 107
LANGLVL(EXPLICITCONVERSIONOPERATORS) compiler option (C++11).................................108
LANGLVL(EXTENDEDFRIEND) compiler option (C++11).. 108
LANGLVL(EXTENDEDINTEGERSAFE) compiler option (C++11)... 108
LANGLVL(EXTERNTEMPLATE) compiler option (C++11).. 108
LANGLVL(INLINENAMESPACE) compiler option (C++11)...108
LANGLVL(REFERENCECOLLAPSING) compiler option (C++11)..108
LANGLVL(RIGHTANGLEBRACKET) compiler option (C++11)... 109
LANGLVL(RVALUEREFERENCES) compiler option (C++11).. 109
LANGLVL(SCOPEDENUM) compiler option (C++11)..109
LANGLVL(STATIC_ASSERT) compiler option (C++11)...109
LANGLVL(VARIADICTEMPLATES) compiler option (C++11)... 109
WARN0X compiler option (C++11).. 109

Errors due to changes in compiler behavior..109
C++ class access errors..109
Exceptions caused by ambiguous overloads... 110
Exceptions caused by user-defined conversions.. 111
Issues caused by the use of incomplete types in exception-specifications...............................111
Syntax errors with array new..112

Part 6. Migration issues for C/C++ applications that use other IBM products........113

Chapter 19. Migration issues with earlier C/C++ applications that run CICS statements.................... 115
Migration of CICS statements from pre-OS/390 C/C++ applications.. 115

CICS statement translation options...115
HEAP option used with the interface to CICS.. 115

viii

User-developed exit routines...115
Multiple libraries under CICS... 115
CICS abend codes and messages.. 116
CICS reason codes..116
Standard stream support under CICS..116
Changes in stderr output under CICS.. 117
Transient data queue names under CICS.. 117

Migration of CICS statements from earlier XL C/C++ applications...117
CICS TS V4.1 with "Extended MVS Linkage Convention".. 117
Customized CEECCSD.COPY and CEECCSDX.COPY files and iconv() changes........................... 117

Chapter 20. Migration issues with earlier C/C++ applications that use DB2...119
Namespace violations and SQL coprocessor-based compilations...119

Example: Performing a macro definition check...120
Example: Explicitly undefining and redefining a macro.. 120

Potential need to specify DBRMLIB with the SQL option..120

Appendix A. Accessibility...123
Accessibility features.. 123
Consult assistive technologies.. 123
Keyboard navigation of the user interface.. 123
Dotted decimal syntax diagrams...123

Notices..127
Terms and conditions for product documentation... 128
IBM Online Privacy Statement.. 129
Policy for unsupported hardware..129
Minimum supported hardware..129
Programming interface information..130
Standards...130
Trademarks.. 130

Bibliography.. 133

Index.. 137

 ix

x

About this document

This document discusses the implications of migrating applications from each of the supported compilers
and libraries to the IBM® z/OS® V2R4 XL C/C++ release. To find the section of the document that applies to
your migration, see “How to use this document” on page xi.

This document contains terminology, maintenance, and editorial changes. Technical changes or additions
to the text and illustrations are indicated by a vertical line (|) to the left of the change.

You may notice changes in the style and structure of some of the contents in this document; for example,
headings that use uppercase for the first letter of initial words only, and procedures that have a different
look and format. The changes are ongoing improvements to the consistency and retrievability of
information in our documents.

How to use this document
You can use this document to:

• Help determine whether and how you can continue to use existing source code, object code, and load
modules

• Become aware of the changes in compiler and runtime behavior that may affect your migration from
earlier versions of the compiler

Note: In most situations, existing well-written applications can continue to work without modification.

This document does not:

• Discuss all of the enhancements that have been made to the z/OS XL C/C++ compiler and IBM Language
Environment® element provided with z/OS.

Notes:

1. All subsequent "Language Environment" references in this document apply to the Language
Environment element that is provided with the z/OS operating system unless otherwise specified as
applying to an earlier operating system.

2. For a list of books that provide information about the z/OS XL C/C++ compiler and Language
Environment element, refer to “z/OS XL C/C++ and related documents” on page xii.

• Show how to change an existing C program so that it can use C++.

Note: For a description of some of the differences between C and C++, see z/OS XL C/C++ Language
Reference.

Typographical conventions

The following table explains the typographical conventions used in this document.

Table 1. Typographical conventions

Typeface Indicates Example

bold Commands, executable names, compiler
options and pragma directives that
contain lower-case letters.

The xlc utility provides two basic compiler
invocation commands, xlc and xlC (xlc++),
along with several other compiler invocation
commands to support various C/C++ language
levels and compilation environments.

© Copyright IBM Corp. 1996, 2019 xi

Table 1. Typographical conventions (continued)

Typeface Indicates Example

italics Parameters or variables whose actual
names or values are to be supplied by
the user. Italics are also used to
introduce new terms.

Make sure that you update the size parameter
if you return more than the size requested.

monospace Programming keywords and library
functions, compiler built-in functions,
file and directory names, examples of
program code, command strings, or
user-defined names.

If one or two cases of a switch statement are
typically executed much more frequently than
other cases, break out those cases by handling
them separately before the switch statement.

z/OS XL C/C++ and related documents
This topic summarizes the content of the z/OS XL C/C++ documents and shows where to find related
information in other documents.

xii About this document

Table 2. z/OS XL C/C++ and related documents

Document Title and Number Key Sections/Chapters in the Document

z/OS XL C/C++ Programming Guide Guidance information for:

• XL C/C++ input and output
• Debugging z/OS XL C programs that use input/output
• Using linkage specifications in C++
• Combining C and assembler
• Creating and using DLLs
• Using threads in z/OS UNIX System Services applications
• Reentrancy
• Handling exceptions, error conditions, and signals
• Performance optimization
• Network communications under z/OS UNIX
• Interprocess communications using z/OS UNIX
• Structuring a program that uses C++ templates
• Using environment variables
• Using System Programming C facilities
• Library functions for the System Programming C facilities
• Using runtime user exits
• Using the z/OS XL C multitasking facility
• Using other IBM products with z/OS XL C/C++ (IBM CICS® Transaction

Server for z/OS, CSP, DWS, IBM DB2®, IBM GDDM, IBM IMS, ISPF, IBM
QMF)

• Globalization: locales and character sets, code set conversion utilities,
mapping variant characters

• POSIX character set
• Code point mappings
• Locales supplied with z/OS XL C/C++
• Charmap files supplied with z/OS XL C/C++
• Examples of charmap and locale definition source files
• Converting code from coded character set IBM-1047
• Using built-in functions
• Using vector programming support
• Using runtime check library
• Using high performance libraries
• Programming considerations for z/OS UNIX C/C++

About this document xiii

Table 2. z/OS XL C/C++ and related documents (continued)

Document Title and Number Key Sections/Chapters in the Document

z/OS XL C/C++ User's Guide Guidance information for:

• z/OS XL C/C++ examples
• Compiler options
• Binder options and control statements
• Specifying Language Environment runtime options
• Compiling, IPA Linking, binding, and running z/OS XL C/C++ programs
• Utilities (Object Library, CXXFILT, DSECT Conversion, Code Set and

Locale, ar and make, BPXBATCH, c89, xlc)
• Diagnosing problems
• Cataloged procedures and IBM REXX EXECs
• Customizing default options for the z/OS XL C/C++ compiler

z/OS XL C/C++ Language Reference Reference information for:

• The C and C++ languages
• Lexical elements of z/OS XL C and C++
• Declarations, expressions, and operators
• Implicit type conversions
• Functions and statements
• Preprocessor directives
• C++ classes, class members, and friends
• C++ overloading, special member functions, and inheritance
• C++ templates and exception handling
• z/OS XL C and C++ compatibility

z/OS XL C/C++ Messages Provides error messages and return codes for the compiler, and its
related application interface libraries and utilities. For the XL C/C++
runtime library messages, refer to z/OS Language Environment Runtime
Messages. For the c89 and xlc utility messages, refer to z/OS UNIX System
Services Messages and Codes.

z/OS XL C/C++ Runtime Library
Reference

Reference information for:

• header files
• library functions

xiv About this document

Table 2. z/OS XL C/C++ and related documents (continued)

Document Title and Number Key Sections/Chapters in the Document

z/OS C Curses Reference information for:

• Curses concepts
• Key data types
• General rules for characters, renditions, and window properties
• General rules of operations and operating modes
• Use of macros
• Restrictions on block-mode terminals
• Curses functional interface
• Contents of headers
• The terminfo database

z/OS XL C/C++ Compiler and
Runtime Migration Guide for the
Application Programmer

Guidance and reference information for:

• Common migration questions
• Application executable program compatibility
• Source program compatibility
• Input and output operations compatibility
• Class library migration considerations
• Changes between releases of z/OS
• Pre-z/OS C and C++ compilers to current compiler migration
• Other migration considerations

z/OS Metal C Programming Guide
and Reference

Guidance and reference information for:

• Metal C run time
• Metal C programming
• AR mode

Standard C++ Library Reference The documentation describes how to use the following three main
components of the Standard C++ Library to write portable C/C++ code
that complies with the ISO standards:

• ISO Standard C Library
• ISO Standard C++ Library
• Standard Template Library (C++)

The ISO Standard C++ library consists of 51 required headers. These 51
C++ library headers (along with the additional 18 Standard C headers)
constitute a hosted implementation of the C++ library. Of these 51
headers, 13 constitute the Standard Template Library, or STL.

About this document xv

Table 2. z/OS XL C/C++ and related documents (continued)

Document Title and Number Key Sections/Chapters in the Document

z/OS Common Debug Architecture
User's Guide

This documentation is the user's guide for IBM's libddpi library. It
includes:

• Overview of the architecture
• Information on the order and purpose of API calls for model user

applications and for accessing DWARF information
• Information on using the Common Debug Architecture with C/C++

source

This user's guide is part of the Runtime Library Extensions
documentation.

z/OS Common Debug Architecture
Library Reference

This documentation is the reference for IBM's libddpi library. It
includes:

• General discussion of Common Debug Architecture
• Description of APIs and data types related to stacks, processes,

operating systems, machine state, storage, and formatting

This reference is part of the Runtime Library Extensions documentation.

DWARF/ELF Extensions Library
Reference

This documentation is the reference for IBM's extensions to the
libdwarf and libelf libraries. It includes information on:

• Consumer APIs
• Producer APIs

This reference is part of the Runtime Library Extensions documentation.

IBM Developer for z Systems® The documentation for IBM Developer for z Systems (www.ibm.com/
support/knowledgecenter/SSQ2R2) provides guidance and reference
information for debugging programs, using IBM Developer for z Systems
in different environments, and language-specific information.

Note: For complete and detailed information on linking and running with Language Environment services and
using the Language Environment runtime options, refer to z/OS Language Environment Programming Guide. For
complete and detailed information on using interlanguage calls, refer to z/OS Language Environment Writing
Interlanguage Communication Applications.

The following table lists the z/OS XL C/C++ and related documents. The table groups the documents
according to the tasks they describe.

Table 3. Documents by task

Tasks Documents

Planning, preparing, and migrating to z/OS
XL C/C++

• z/OS XL C/C++ Compiler and Runtime Migration Guide for the
Application Programmer

• z/OS Language Environment Customization
• z/OS Language Environment Runtime Application Migration

Guide
• z/OS UNIX System Services Planning
• z/OS Planning for Installation

xvi About this document

http://www.ibm.com/support/knowledgecenter/SSQ2R2
http://www.ibm.com/support/knowledgecenter/SSQ2R2

Table 3. Documents by task (continued)

Tasks Documents

Installing • z/OS Program Directory
• z/OS Planning for Installation
• z/OS Language Environment Customization

Option customization • z/OS XL C/C++ User's Guide

Coding programs • z/OS XL C/C++ Runtime Library Reference
• z/OS XL C/C++ Language Reference
• z/OS XL C/C++ Programming Guide
• z/OS Metal C Programming Guide and Reference
• z/OS Language Environment Concepts Guide
• z/OS Language Environment Programming Guide
• z/OS Language Environment Programming Reference

Coding and binding programs with
interlanguage calls

• z/OS XL C/C++ Programming Guide
• z/OS XL C/C++ Language Reference
• z/OS Language Environment Programming Guide
• z/OS Language Environment Writing Interlanguage

Communication Applications
• z/OS MVS Program Management: User's Guide and Reference
• z/OS MVS Program Management: Advanced Facilities

Compiling, binding, and running programs • z/OS XL C/C++ User's Guide
• z/OS Language Environment Programming Guide
• z/OS Language Environment Debugging Guide
• z/OS MVS Program Management: User's Guide and Reference
• z/OS MVS Program Management: Advanced Facilities

Compiling and binding applications in the
z/OS UNIX (z/OS UNIX) environment

• z/OS XL C/C++ User's Guide
• z/OS UNIX System Services User's Guide
• z/OS UNIX System Services Command Reference
• z/OS MVS Program Management: User's Guide and Reference
• z/OS MVS Program Management: Advanced Facilities

About this document xvii

Table 3. Documents by task (continued)

Tasks Documents

Debugging programs • README file
• z/OS XL C/C++ User's Guide
• z/OS XL C/C++ Messages
• z/OS XL C/C++ Programming Guide
• z/OS Language Environment Programming Guide
• z/OS Language Environment Debugging Guide
• z/OS Language Environment Runtime Messages
• z/OS UNIX System Services Messages and Codes
• z/OS UNIX System Services User's Guide
• z/OS UNIX System Services Command Reference
• z/OS UNIX System Services Programming Tools
• IBM Developer for z Systems (www.ibm.com/support/

knowledgecenter/SSQ2R2) documentation

Developing debuggers and profilers • z/OS Common Debug Architecture User's Guide
• z/OS Common Debug Architecture Library Reference
• DWARF/ELF Extensions Library Reference

Packaging XL C/C++ applications • z/OS XL C/C++ Programming Guide
• z/OS XL C/C++ User's Guide

Using shells and utilities in the z/OS UNIX
environment

• z/OS XL C/C++ User's Guide
• z/OS UNIX System Services Command Reference
• z/OS UNIX System Services Messages and Codes

Using sockets library functions in the z/OS
UNIX environment

• z/OS XL C/C++ Runtime Library Reference

Using the ISO Standard C++ Library to
write portable C/C++ code that complies
with ISO standards

• Standard C++ Library Reference

Performing diagnosis and submitting an
Authorized Program Analysis Report
(APAR)

• z/OS XL C/C++ User's Guide

Note: For information on using the prelinker, see the appendix on prelinking and linking z/OS XL C/C++
programs in z/OS XL C/C++ User's Guide.

Softcopy documents

The z/OS XL C/C++ publications are supplied in PDF format and available for download from the z/OS XL
C/C++ documentation library (www.ibm.com/software/awdtools/czos/library).

Note: To ensure that you can access cross-reference links to other z/OS XL C/C++ PDF documents,
download each document into the same directory on your local machine and do not change the PDF file
names.

xviii About this document

http://www.ibm.com/support/knowledgecenter/SSQ2R2
http://www.ibm.com/support/knowledgecenter/SSQ2R2
http://www.ibm.com/software/awdtools/czos/library
http://www.ibm.com/software/awdtools/czos/library

To read a PDF file, use the Adobe Reader. If you do not have the Adobe Reader, you can download it
(subject to Adobe license terms) from the Adobe website (www.adobe.com).

You can also browse the documents on the World Wide Web by visiting the z/OS Internet Library
(www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary).

z/OS XL C/C++ on the World Wide Web
Additional information on z/OS XL C/C++ is available on the product page for z/OS XL C/C++
(www.ibm.com/products/xl-cpp-compiler-zos).

This page contains late-breaking information about the z/OS XL C/C++ product, including the compiler,
the C/C++ libraries, and utilities. There are links to other useful information, such as the z/OS XL C/C++
information library and the libraries of other z/OS elements that are available on the web. The z/OS XL C/C
++ home page also contains links to other related websites.

Where to find more information
For an overview of the information associated with z/OS, see z/OS Information Roadmap.

z/OS Basic Skills in IBM Knowledge Center
z/OS Basic Skills in IBM Knowledge Center is a Web-based information resource intended to help users
learn the basic concepts of z/OS, the operating system that runs most of the IBM mainframe computers in
use today. IBM Knowledge Center is designed to introduce a new generation of Information Technology
professionals to basic concepts and help them prepare for a career as a z/OS professional, such as a z/OS
system programmer.

Specifically, z/OS Basic Skills is intended to achieve the following objectives:

• Provide basic education and information about z/OS without charge
• Shorten the time it takes for people to become productive on the mainframe
• Make it easier for new people to learn z/OS.

z/OS Basic Skills in IBM Knowledge Center (www.ibm.com/support/knowledgecenter/zosbasics/
com.ibm.zos.zbasics/homepage.html) is available to all users (no login required).

Technical support
Additional technical support is available from the z/OS XL C/C++ Support page (www.ibm.com/
mysupport/s/topic/0TO0z0000006v6TGAQ/xl-cc?language=en_US&productId=01t0z000007g72LAAQ).
This page provides a portal with search capabilities to a large selection of technical support FAQs and
other support documents.

If you cannot find what you need, you can e-mail:

compinfo@cn.ibm.com

For the latest information about z/OS XL C/C++, visit product page for z/OS XL C/C++ (www.ibm.com/
products/xl-cpp-compiler-zos).

For information about boosting performance, productivity and portability, visit IBM Z and LinuxONE
Community (community.ibm.com/community/user/ibmz-and-linuxone/groups/topic-home?
CommunityKey=5805da79-8284-4015-97fb-5a19f6480452).

How to send your comments to IBM
We invite you to submit comments about the z/OS product documentation. Your valuable feedback helps
to ensure accurate and high-quality information.

Important: If your comment regards a technical question or problem, see instead “If you have a technical
problem” on page xx.

About this document xix

http://www.adobe.com
http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
https://www.ibm.com/products/xl-cpp-compiler-zos
https://www.ibm.com/products/xl-cpp-compiler-zos
http://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
http://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
https://www.ibm.com/mysupport/s/topic/0TO0z0000006v6TGAQ/xl-cc?language=en_US&productId=01t0z000007g72LAAQ
https://www.ibm.com/mysupport/s/topic/0TO0z0000006v6TGAQ/xl-cc?language=en_US&productId=01t0z000007g72LAAQ
https://www.ibm.com/products/xl-cpp-compiler-zos
https://www.ibm.com/products/xl-cpp-compiler-zos
https://community.ibm.com/community/user/ibmz-and-linuxone/groups/topic-home?CommunityKey=5805da79-8284-4015-97fb-5a19f6480452
https://community.ibm.com/community/user/ibmz-and-linuxone/groups/topic-home?CommunityKey=5805da79-8284-4015-97fb-5a19f6480452
https://community.ibm.com/community/user/ibmz-and-linuxone/groups/topic-home?CommunityKey=5805da79-8284-4015-97fb-5a19f6480452

Submit your feedback by using the appropriate method for your type of comment or question:
Feedback on z/OS function

If your comment or question is about z/OS itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM Knowledge Center function
If your comment or question is about the IBM Knowledge Center functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Knowledge Center
Support at ibmkc@us.ibm.com.

Feedback on the z/OS product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

• Your name, company/university/institution name, and email address
• The following deliverable title and order number: z/OS XL C/C++ Compiler and Runtime Migration

Guide for the Application Programmer, GC14-7306-40
• The section title of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the
comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

• Go to the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

xx z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

http://www.ibm.com/developerworks/rfe/
http://www.ibm.com/developerworks/rfe/
mailto:ibmkc@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

Part 1. Introduction

Before you start migrating applications to z/OS V2R4 XL C/C++, familiarize yourself with the following
information:

• Chapter 1, “New migration issues for z/OS V2R4 XL C/C++,” on page 3
• Chapter 2, “Program migration checklists,” on page 5

© Copyright IBM Corp. 1996, 2019 1

2 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 1. New migration issues for z/OS V2R4 XL
C/C++

IBM z/OS V2R4 XL C/C++ compiler has made performance and usability enhancements for z/OS V2R4.
For detailed information about these changes, see z/OS XL C/C++ User's Guide.

The following enhancement might introduce migration issues that need your attention:
Changes to __VEC__ macro

The predefined value of the __VEC__ macro is changed to 10403. In the previous releases, it is
10402.

For information about the changes that the IBM Language Environment element has made for z/OS V2R4,
see Language Environment new functions to consider in z/OS Introduction and Release Guide.

Migration tools
You can use migration tools to facilitate migration activities. For detailed information, see “Tools that
facilitate your migration” on page 9.

© Copyright IBM Corp. 1996, 2019 3

4 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 2. Program migration checklists

This information includes checklists that you can use at various stages of migrating an application to the
z/OS V2R4 XL C/C++ compiler. These phases are:

• “Before you start your migration” on page 5
• “When you are compiling code” on page 6
• “When you are binding program objects or load modules” on page 7
• “When you are running an application ” on page 7

For product history information to help you determine which topics in this document apply to your
migration, see “Applicability of product information” on page 9.

Before you start your migration
Before you migrate programs or applications to z/OS V2R4 XL C/C++ compiler, determine potential
problems with your source code by reviewing the following checklist:

1. Determine the group of compiler releases from which you are migrating:

• An earlier z/OS C/C++ compiler
• An OS/390® C/C++ compiler
• A pre-OS/390 C/C++ compiler

2. View the documentation updates and other post-release information provided by the ReadMe files at
Updates to z/OS XL C/C++ Publications (www.ibm.com/support/docview.wss?uid=swg27007531).

3. Review the changes introduced in z/OS V2R4 XL C/C++ compiler. See Chapter 1, “New migration issues
for z/OS V2R4 XL C/C++,” on page 3.

4. Review the changes that have been implemented since the last C/C++ compiler that was used with the
application:

• If you are migrating from an earlier z/OS C/C++ application, see Part 4, “Migration of earlier z/OS C/C
++ applications to z/OS V2R4 XL C/C++,” on page 65.

• If you are migrating from an OS/390 C/C++ application, see Part 3, “Migration of OS/390 C/C++
applications to z/OS V2R4 XL C/C++,” on page 45.

• If you are migrating from a pre-OS/390 C/C++ compiler, see Part 2, “Migration of pre-OS/390 C/C++
applications to z/OS V2R4 XL C/C++,” on page 11.

5. Review the types of source code changes that have been identified since the last C/C++ compiler that
was used with the application:

• If you are migrating from an earlier z/OS C/C++ application, see Chapter 13, “Source code
compatibility issues with earlier z/OS C/C++ programs,” on page 67.

• If you are migrating from an OS/390 C/C++ application, see Chapter 8, “Source code compatibility
issues with OS/390 programs,” on page 47.

• If you are migrating from a pre-OS/390 C/C++ application, see Chapter 3, “Source code compatibility
issues with pre-OS/390 C/C++ programs,” on page 13.

Note: If your application uses class libraries that have been modified or are no longer supported, the
resulting migration issues are discussed as source code compatibility changes.

6. Use the INFO compiler option to identify the following potential problems:

• Functions not prototyped. See “INFO compiler option” on page 52.

Notes:

a. Function prototypes allow the compiler to check for mismatched parameters.

© Copyright IBM Corp. 1996, 2019 5

http://www.ibm.com/support/docview.wss?uid=swg27007531

b. Return parameters might be mis-matched, especially when the code expects a pointer. (For
example, malloc and family)

• Assignment of a long or a pointer to an integer, or assignment of an integer to a pointer. See “Pointer
incompatibilities” on page 14.

Note: This type of assignment could cause truncation. A reference to the pointer might be invalid.
Even assignments with an explicit cast will be flagged. See “CHECKOUT(CAST) compiler option” on
page 51.

7. If your code must be compliant with a specific ISO C++ standard, see Part 5, “ISO Standard C++
compliance migration issues,” on page 99.

8. If you are using the IBM object model for an XL C++ program or application that was last compiled or
executed with the compat object model, see “Alignment incompatibilities between object models” on
page 88.

When you are compiling code
Before you use z/OS V2R4 XL C/C++ compiler to compile pre-existing source code, review the following
checklist:

1. Review the compile-time migration issues that have been identified in one of the following topics:

• Chapter 14, “Compile-time migration issues with earlier z/OS C/C++ programs,” on page 73.
• Chapter 9, “Compile-time migration issues with OS/390 programs,” on page 49.
• Chapter 4, “Compile-time issues with pre-OS/390 C/C++ programs,” on page 17.

2. If you are using a SYSLIB DD card to compile your XL C/C++ program, see “Changes that affect SYSLIB
DD cards” on page 21 .

3. If your XL C/C++ program behaves unexpectedly after you re-compile it, consider the following
possibilities:

• At least one of the compiler options that you used does not function as it did before, or it is no longer
supported. See the appropriate information in this document:

– If you are migrating from any application, see “Changes in compiler option functionality” on page
76

– If you are migrating from an OS/390 C/C++ application, see “Changes in compiler options” on
page 50

– If you are migrating from a pre-OS/390 C/C++ application, see “Changes in compiler options” on
page 17

• The compiler invocation has been modified since you last used it.
• There might be a newer option or invocation that is more suitable for your source program. See the

appropriate information in this document:

– If you are migrating from any application, see “Changes that affect compiler invocations” on page
81

– If you are migrating from a pre-OS/390 C/C++ application, see “Changes that affect compiler
invocations” on page 21

4. Are you using the NAMEMANGLING compiler option under ILP32 in a batch environment? If so, see
“ILP32 compiler option and name mangling” on page 83.

5. If you are using the IPA or IPA(LINK) option to compile the program, see the appropriate information in
this document:

• If you are migrating from any application, see:

– “Changes that affect JCL procedures” on page 82
– “IPA(LINK) compiler option and exploitation of 64-bit virtual memory” on page 83

• If you are migrating from a pre-OS/390 C/C++ application, see

6 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

– “IPA Link step default changes” on page 52
– “IPA object module binary compatibility” on page 53

When you are binding program objects or load modules
Before you try to bind or relink pre-existing program objects or load modules, review the following
checklist:

1. Review the potential bind-time migration issues that have been identified since the last C/C++
compiler that was used with the application:

• If you are migrating from any z/OS C/C++ application, see Chapter 15, “Bind-time migration issues
with earlier z/OS C/C++ programs,” on page 87.

• If you are migrating from an OS/390 C/C++ application, see Chapter 10, “Bind-time migration issues
with OS/390 C/C++ programs,” on page 59.

• If you are migrating from a pre-OS/390 C/C++ application, see Chapter 5, “Bind-time migration
issues with pre-OS/390 C/C++ programs,” on page 23.

2. Consider the following questions:

Are there any relevant library changes? For information, see Chapter 12, “Migration issues resulting
from class library changes between OS/390 C/C++ applications and Standard C++ library,” on page
63.
Do input/output or other operations have library dependencies that might be affected by product
changes since the program was last run? For more information, see Chapter 7, “Input and output
operations compatibility,” on page 39.
Has there been any change in exception handling since the program was last run? For information,
see “Hardware and OS exceptions” on page 37 or (for C++ programs) “cv-qualifications when the
thrown and caught types are the same” on page 105.
Are you using System Program C (SPC) facility modules? For information, see “Assembler source
code changes in System Programming C (SPC) applications built with EDCXSTRX” on page 16.
Does the program need to access IBM CICS or IBM DB2 data? For information, see Part 6,
“Migration issues for C/C++ applications that use other IBM products,” on page 113.
Does the C or C++ module include interlanguage calls (ILC)? For information, see “C/370 modules
with interlanguage calls (ILC)” on page 26 or more specific topics listed in the index.
If you are migrating from a pre-OS/390 C/C++ application, are you using the TARGET(OSV2R10)
compiler option? If so, see “Namespace pollution binder errors” on page 87.

When you are running an application
Before you try to run a legacy application under z/OS V2R4, review the following checklist:

1. Review the potential runtime migration issues that have been identified:

• If the application has been run successfully under an earlier z/OS runtime environment, see Chapter
16, “Runtime migration issues with earlier z/OS C/C++ applications,” on page 91.

• If the application was last run successfully under an OS/390 runtime environment, see Chapter 11,
“Runtime migration issues with OS/390 C/C++ applications,” on page 61.

• If the application has not been run in an environment more recent than an OS/390 runtime
environment, see Chapter 6, “Runtime migration issues with pre-OS/390 C/C++ applications,” on
page 31.

2. If you need to retain the runtime behavior of the application, see “Retention of previous runtime
behavior” on page 92, “Retention of OS/390 runtime behavior” on page 61, or “Retention of pre-
OS/390 runtime behavior” on page 31, as appropriate.

3. If you are migrating from a runtime environment that predates the z/OS V1R5 Language Environment
release, verify the following:

Chapter 2. Program migration checklists 7

• The concatenation order of your libraries, to ensure that there are no links to non-Language
Environment interfaces.

• Data set names that are referenced by all customized procedures (such as JCL and makefiles) have
not been changed.

See “Runtime library compatibility issues with pre-OS/390 applications” on page 34 and “Changes
that affect customized JCL procedures” on page 32.

4. If your application does not run, it may be either a migration problem, or an error in your program that
surfaces as a result of enhancements to Language Environment services. Do the following:

• Relink application load modules or program objects if any of the following are true:

It is an IBM C/370 application.
It contains ILCs between C and Fortran, or between C and COBOL. For information, see “C/370
modules with interlanguage calls (ILC)” on page 26.
It is an SPC application that uses the library. For information, see “Assembler source code
changes in System Programming C (SPC) applications built with EDCXSTRX” on page 16.
It contains calls to ctest(). For information, see “Requirements for relinking C/370 modules
that invoke Debug Tool” on page 26.
The PDS with the low-level qualifier SCEERUN (which belongs to the runtime library), is not
concatenated ahead of the PDS with the low-level qualifier SIBMLINK (which belongs to the C-
PL/I Common Library). For information, see “Common library initialization compatibility issues
with C/370 modules” on page 35.
A message suggests either resetting an environment variable or relinking application load
modules or program objects. For information, see Chapter 15, “Bind-time migration issues with
earlier z/OS C/C++ programs,” on page 87, “Runtime library messages” on page 31 or
“Program modules from an earlier release” on page 87.

• Use the STORAGE and HEAP runtime options to find uninitialized storage. For information about
initialization schemes and procedures, see “Common library initialization compatibility issues with
C/370 modules” on page 35.

Notes:

a. In some cases, applications will run with uninitialized storage, because the runtime library may
inadvertently clear storage, or because the storage location referenced is set to zero.

b. IBM recommends STORAGE(FE,DE,BE) and HEAP(16,16,ANY,FREE) to determine if your
application is coded correctly. Any uninitialized pointers will fail at first reference instead of
accidentally referencing storage locations at random.

c. The STORAGE or HEAP option will cause your program to run more slowly. Do not use them for
production; use them for development only.

• Look for undocumented interfaces.

It is possible that your application has dependencies on undocumented interfaces. For example, you
might have dependencies on library control blocks, specific errno values, or specific return values.
Alter your code to use only documented interfaces, and then recompile the code and relink the load
modules or program objects. For information, see Chapter 7, “Input and output operations
compatibility,” on page 39.

• It is possible that your application is being initialized or terminated differently because of changes in
the runtime environment. See “Common library initialization compatibility issues with C/370
modules” on page 35 and “Order of destruction for statically initialized objects” on page 103.

5. If your application does not require the features provided by z/OS V2R4, use environment variables to
maintain the expected behavior. For information, see “Changes that affect compiler invocations” on
page 81.

6. Contact your System Programmer to determine whether or not all service has been applied to your
system. Often, the problem you encounter has already been reported to IBM, and a fix is available.

7. If you have verified with your System Programmer that all service has been applied to your system, ask
your Service Representative to open a Problem Management Record (PMR) against the applicable IBM

8 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

product. For information on how to open a PMR, refer to Software Support Handbook (www.ibm.com/
support/customercare/sas/f/handbook/home.html).

Tools that facilitate your migration
This section describes tools available for your assistance during the migration activity.

The Edge Portfolio Analyzer
The Edge Portfolio Analyzer can provide assistance in taking an inventory of your existing XL C/C++ load
modules. The object must be compiled with z/OS V1R10 XL C/C++ compiler or later for reporting of
compiler options.

The Edge Portfolio Analyzer is no longer sold by IBM. For more information, see Edge Portfolio Analyzer
(www.edge-information.com).

Note: Any references in this information to non-IBM Web sites are provided for convenience only and do
not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not
part of the materials for this IBM product and use of those Web sites is at your own risk.

Neither International Business Machines Corporation nor any of its affiliates assume any responsibility or
liability in respect of any results obtained by implementing any recommendations contained in this
article/document. Implementation of any such recommendations is entirely at the implementor’s risk.

Applicability of product information
In Table 4 on page 9, references to the products listed in the first column also apply to the products in
the second column.

Table 4. Product references

Referenced compilers Related products

Pre-OS/390 C/C++ compilers

Note: If you are migrating a program that has been
run successfully only with a pre-OS/390 C/C++
compiler, contact your service representative.

• IBM C/C++ for MVS/ESA V3R1 or V3R2
• IBM AD/Cycle C/370 V1R1 or V1R2
• IBM C/370 V1R1 or V1R2
• IBM C/370 V2R1 compiler and the IBM C/370

V2R1 library
• IBM C/370 V2R1 compiler and the IBM C/370

V2R2 library

OS/390 C/C++ compilers

Notes:

1. IBM OS/390 V1R1 C/C++ is the same as IBM
C/C++ for MVS/ESA V3R2.

2. IBM z/OS V1R1 C/C++ is the same as IBM
OS/390 V2R10 C/C++. IBM OS/390 V2R10 is
also reshipped in z/OS V1R2 through to V1R6.

3. If you are migrating a program that has been
run successfully only with the OS/390 V1R1 C/C
++ compiler, contact your service
representative.

4. IBM OS/390 is no longer in service.

• IBM OS/390 V1R1 C/C++ (reship of IBM C/C++
for MVS/ESA V3R2)

• IBM OS/390 V1R2 or V1R3 C/C++
• IBM OS/390 V2R4, V2R5, V2R6, V2R7, V2R8,

V2R9, or V2R10 C/C++
• IBM z/OS V1R1 C/C++ (reship of IBM OS/390

V2R10 C/C++)

Chapter 2. Program migration checklists 9

http://www.ibm.com/support/customercare/sas/f/handbook/home.html
http://www.ibm.com/support/customercare/sas/f/handbook/home.html
http://www.edge-information.com
http://www.edge-information.com

Table 4. Product references (continued)

Referenced compilers Related products

Earlier releases of the z/OS C/C++ compilers

Note: Service is available for compilers z/OS XL C/C
++ V2R1 through z/OS V2R3 XL C/C++.

• IBM z/OS V1R1 C/C++ (equivalent to the OS/390
V2R10 compiler)

• IBM z/OS V1R2 C/C++
• IBM z/OS V1R3 C/C++
• IBM z/OS V1R4 C/C++
• IBM z/OS V1R5 C/C++
• IBM z/OS V1R6 C/C++
• IBM z/OS V1R7 XL C/C++
• IBM z/OS V1R8 XL C/C++
• IBM z/OS V1R9 XL C/C++
• IBM z/OS V1R10 XL C/C++
• IBM z/OS V1R11 XL C/C++
• IBM z/OS V1R12 XL C/C++
• IBM z/OS V1R13 XL C/C++
• IBM z/OS V2R1 XL C/C++
• IBM z/OS XL C/C++ V2R1M1 web deliverable
• IBM z/OS XL C/C++ V2R2

You can refer to IBM Lifecycle Support for z/OS (www.ibm.com/software/support/systemsz/lifecycle),
which contains the following information for the z/OS products that have been distributed by IBM:

• Product name and product ID
• General availability date
• End of support date

10 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

http://www.ibm.com/software/support/systemsz/lifecycle

Part 2. Migration of pre-OS/390 C/C++ applications to
z/OS V2R4 XL C/C++

Prior to IBM OS/390, C/C++ applications were created with one of the following products:

• IBM C/C++ for MVS/ESA V3R1 or V3R2
• IBM AD/Cycle C/370 V1R1 or V1R2
• IBM C/370 V1R1 or V1R2
• IBM C/370 V2R1 compiler and the IBM C/370 V2R1 library
• IBM C/370 V2R1 compiler and the IBM C/370 V2R2 library

Notes:

1. If your application uses IBM CICS information or statements, also see Chapter 19, “Migration issues
with earlier C/C++ applications that run CICS statements,” on page 115.

2. If your application uses IBM DB2 information or statements, also see Chapter 20, “Migration issues
with earlier C/C++ applications that use DB2,” on page 119.

The following topics provide information relevant to migrating a pre-OS/390 application to z/OS V2R4 XL
C/C++:

• Chapter 3, “Source code compatibility issues with pre-OS/390 C/C++ programs,” on page 13
• Chapter 4, “Compile-time issues with pre-OS/390 C/C++ programs,” on page 17
• Chapter 5, “Bind-time migration issues with pre-OS/390 C/C++ programs,” on page 23
• Chapter 6, “Runtime migration issues with pre-OS/390 C/C++ applications,” on page 31
• Chapter 7, “Input and output operations compatibility,” on page 39

© Copyright IBM Corp. 1996, 2019 11

12 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 3. Source code compatibility issues with pre-
OS/390 C/C++ programs

When you migrate applications that predate IBM OS/390 C/C++ compilers to the IBM z/OS V2R4 XL C/C+
+ product, be aware of the following migration issues:

• “Removal of IBM Open Class Library support” on page 13
• “Source code modifications necessitated by changes in runtime library” on page 13
• “Resource allocation and memory management issues” on page 13
• “Addressing incompatibilities” on page 14
• “Data type incompatibilities” on page 15
• “Changes required by programs with interlanguage calls” on page 15
• “Internationalization incompatibilities” on page 16

Note: Some source code compatibility issues can be addressed by modifying runtime options. See
Chapter 11, “Runtime migration issues with OS/390 C/C++ applications,” on page 61.

Removal of IBM Open Class Library support
As of z/OS V1R9, IBM Open Class® Library (IOC) dynamic link libraries (DLLs) are no longer shipped with
the z/OS XL C/C++ compiler.

Any source dependency on an IOC DLL must be removed.

For information about the libraries that are supported by the current release, see z/OS XL C/C++ Runtime
Library Reference.

Source code modifications necessitated by changes in runtime
library

When you migrate programs to z/OS V2R4 XL C/C++, review “Changes in runtime option specification” on
page 33 for changes that will necessitate changes in your source code. Also review your use of the
#pragma runopts directive in your source code.

The #pragma runopts directive
If occurrences of the ISASIZE/ISAINC, STAE/SPIE, LANGUAGE, or REPORT runtime options are specified
by a #pragma runopts directive in your source code, you might want to change them to the supported
equivalent before recompiling to avoid a warning or informational message during compilation.

For more information on preprocessor directives, refer to z/OS XL C/C++ Language Reference.

Resource allocation and memory management issues
Incompatibilities in resource allocation and memory management might cause unexpected results in the
output of your program. In your source code, you should be aware of potential problems when you use
any of the following operators or structures:

• “The sizeof operator applied to a function return type” on page 14
• “A user-defined global new operator and array new” on page 14

© Copyright IBM Corp. 1996, 2019 13

The sizeof operator applied to a function return type
Figure 1 on page 14 illustrates how the behavior of sizeof, when applied to a function return type, was
changed in the C/C++ for MVS/ESA V3R2 compiler.

 char foo();
 ..
 s = sizeof foo();

Figure 1. Statements that apply the sizeof operator to a function return type

If the example in Figure 1 on page 14 is compiled with a compiler prior to C/C++ for MVS/ESA V3R2
compiler, char is widened to int in the return type, so sizeof returns s = 4.

If the example in Figure 1 on page 14 is compiled with the C/C++ for MVS/ESA V3R2 compiler, or with any
OS/390 C/C++ compiler, the size of the original char type is retained. In Figure 1 on page 14, sizeof
returns s = 1. The size of the original type of other data types such as short, and float is also
retained.

If your code has a dependency on the behavior of the sizeof operator, be aware that with the OS/390
V2R4 C/C++ and subsequent compilers, you can use the #pragma wsizeof directive or the WSIZEOF
compiler option to get sizeof to return the widened size for function return types.

For more information on #pragma wsizeof, see z/OS XL C/C++ Language Reference. For more information
on the WSIZEOF | NOWSIZEOF compiler option, see z/OS XL C/C++ User's Guide.

A user-defined global new operator and array new
If you are migrating from the C/C++ for MVS/ESA V3R2 compiler to z/OS V2R4 XL C/C++, and you have
written your own global new operator, it is no longer called when you create an array object: In this case,
you must add a local overloaded operator. The following example shows user-defined global new operator
and array new.

void* operator new (size_t sz) {
 g_new_count++;
 return MyMalloc(sz);
 }

 main() {
 X new_array[10]; // the global new operator
 // shown above is not called
 // in compilers for OS/390 or later
 }

Addressing incompatibilities
Addressing incompatibilities might cause unexpected results in the output of your program. In your
source code, you should be aware of the following migration issues:

• “C/370 V2 main program and main entry point” on page 14
• “Pointer incompatibilities” on page 14

C/370 V2 main program and main entry point
C/370 V2 programs that are fetched must be recompiled without a main entry point. Any attempt to fetch
a main program will fail.

Pointer incompatibilities
According to the ISO C Standard, pointers to void types and pointers to functions are incompatible types.
The C/370, AD/Cycle C/370, IBM C/MVS, and z/OS XL C compilers perform some type-checking, such as
in assignments, argument passing on function calls, and function return codes.

14 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Note: If you are not conforming to ISO rules for the use of pointer types, your runtime results may not be
as expected, especially when you are using the OPTIMIZE compiler option.

With the AD/Cycle C/370, and the C/C++ for MVS/ESA compilers, you could not assign NULL to an integer
value. The statement shown in Figure 2 on page 15 was not allowed:

 int i = NULL;

Figure 2. Assignment of NULL to an integer value

With the z/OS XL C compilers, you can assign NULL pointers to void types only if you specify
LANGLVL(COMMONC) when you compile your program. For information about constructs supported by
LANGLVL(COMMONC) but not by LANGLVL(EXTENDED) or LANGLVL(ANSI), refer to LANGLVL in z/OS XL
C/C++ User's Guide.

Data type incompatibilities
Data type incompatibilities might cause unexpected results in the output of your program. In your source
code, you should be aware of potential migration issues:

• “Assignment restrictions for packed structures and unions” on page 15
• “DSECT header files and packed structures” on page 15

Assignment restrictions for packed structures and unions
With the z/OS XL C compiler, you can no longer do the following:

• Assign packed and non-packed structures to each other.
• Assign packed and non-packed unions to each other.
• Pass a packed union or packed structure as a function parameter if a non-packed version is expected.
• Pass a non-packed union or non-packed structure as a function parameter if a packed version is

expected.

If you attempt to do so, the compiler issues an error message.

DSECT header files and packed structures
Header files generated by the DSECT utility use #pragma pack rather than the _Packed qualifier to pack
structures or unions. In rare cases, you might have to modify and recompile your code.

Note: The _Packed qualifier is an IBM extension of the C language that was introduced with the C/370
family of compilers. It can also be applied to C++ classes. If you specify the _Packed qualifier on a
structure or union that contains another structure or union as a member, the qualifier is not passed to the
contained structure or union.

Changes required by programs with interlanguage calls
If your code calls functions that have mixed-language input or output, you should be aware of the
following potential source code issues:

• “Explicit program mask manipulations” on page 15
• “Assembler source code changes in System Programming C (SPC) applications built with EDCXSTRX” on

page 16

Explicit program mask manipulations
Programs created with the C/370 V2 compiler and library that explicitly manipulated the program mask
might require source changes.

Changes are required if you have one of the following types of programs:

Chapter 3. Source code compatibility issues with pre-OS/390 C/C++ programs 15

• A C program containing interlanguage calls (ILC), where the invoked code uses the S/370 decimal
instructions that might generate an unmasked decimal overflow condition, requires modification for
migration. Use either of the following two methods:

– Preferred method: If the called routine is assembler, save the existing mask, set the new value, and
when finished, restore the saved mask.

– Change the C code so that the produced SIGFPE signal is ignored in the called code. In the following
example, the SIGNAL calls surround the overflow-producing code. The SIGFPE exception handling is
disabled before the problem signal is encountered, and then reenabled after it has been processed.
See Figure 3 on page 16.

• A C program containing assembler ILCs that explicitly alter the program mask, and do not explicitly save
and restore it, also requires modification for migration.

If user code explicitly alters the state of the program mask, the value before modification must be
saved, and the value restored to its former value after the modification. You must ensure that the
decimal overflow program mask bit is enabled during the execution of C code. Failure to preserve the
mask may result in unpredictable behavior.

These changes also apply in a System Programming C environment, and to Customer Information Control
System (CICS) programs in the handling and management of the PSW mask.

 signal(SIGFPE, SIG_IGN); /* ignore exceptions */
 ...
 callit(): /* in called routine */
 ...
 signal(SIGFPE, SIG_DFL); /* restore default handling */

Figure 3. Statements that ignore SIGFPE exception and restore default exception handling

Assembler source code changes in System Programming C (SPC)
applications built with EDCXSTRX

If you have SPC applications that are built with EDCXSTRX and use dynamic C library functions, note that
the name of the C library function module was changed from EDCXV in C/370 V2 to CEEEV003 since the
Language Environment V1R5 release. Change the name from EDCXV to CEEEV003 in the assembler
source of your program that loads the library, and reassemble.

Internationalization incompatibilities
If your code will be used with different locales, you should be aware of the information in “Support of
alternate code points” on page 16.

Support of alternate code points
The following alternate code points are not supported by z/OS V2R4 XL C/C++:

• X'8B' as alternate code point for X'C0' (the left brace)
• X'9B' as alternate code point for X'D0' (the right brace)

These alternate code points are supported by the C/370 and AD/Cycle C/370 compilers (the NOLOCALE
option is required if you are using the AD/Cycle C/370 V1R2 compiler).

For more information about using coded character sets and locale functions, see z/OS XL C/C++
Programming Guide.

16 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 4. Compile-time issues with pre-OS/390 C/C
++ programs

When you use z/OS V2R4 XL C/C++ to compile programs that were last compiled as part of a pre-OS/390
C/C++ application, be aware of the following migration issues:

• “Changes in compiler listings, messages, and return codes” on page 17
• “Changes in compiler options” on page 17
• “Changes that affect compiler invocations” on page 21
• “Changes that affect SYSLIB DD cards” on page 21

Changes in compiler listings, messages, and return codes
From release to release, message contents can change and, for some messages, return codes can change.
Errors can become warnings, and warnings can become errors. You must update any application that is
affected by changes in message contents or return codes. Do not build dependencies on message
contents, message numbers, or return codes. See z/OS XL C/C++ Messages for a list of compiler
messages.

Listing formats, especially the pseudo-assembler parts, will continue to change from release to release.
Do not build dependencies on the structure or content of listings. For information about Using the z/OS XL
C compiler listing or Using the z/OS XL C++ compiler listing for the current release, refer to z/OS XL C/C++
User's Guide.

Macro redefinitions might result in severe errors
As of z/OS V1R7 XL C, the behavior of macro redefinition has changed. For certain language levels, the XL
C compiler will issue a severe error message instead of a warning message when a macro is redefined to a
value that is different from the first definition.

For information about the language levels that are affected, see “LANGLVL(ANSI), LANGLVL(SAA), or
LANGLVL(SAAL2) compiler option and macro redefinitions” on page 19 and “LANGLVL(EXTENDED)
compiler option and macro redefinitions” on page 19.

Changes in compiler options
This topic describes changes that would affect your use of compiler options.

Compiler options that are no longer supported
This topic lists compiler options that were supported in pre-OS/390 compilers but not in subsequent
compilers.

DECK compiler option
As of z/OS V1R2 C/C++ compiler, the DECK compiler option is no longer supported. If you want to route
output to DD:SYSPUNCH, use OBJECT(DD:SYSPUNCH).

LANGLVL(COMPAT) compiler option
In C/C++ for MVS/ESA V3R2, the LANGLVL(COMPAT) option directed the compiler to generate code that is
compatible with older levels of C and C++. As of z/OS V1R2 C/C++ compiler, the LANGLVL(COMPAT)
compiler option is no longer supported.

© Copyright IBM Corp. 1996, 2019 17

OMVS compiler option
As of z/OS V1R2 C/C++ compiler, the OMVS compiler option is no longer supported. The replacement for it
is the OE option.

SRCMSG compiler option
As of z/OS V1R2 C/C++ compiler, the SRCMSG compiler option is no longer supported.

SYSLIB, USERLIB, SYSPATH and USERPATH compiler options
In IBM C/C++ for MVS/ESA V3R2 compiler, the SYSLIB, USERLIB, SYSPATH and USERPATH compiler
options directed the compiler to specified include files. As of z/OS V1R2 C/C++ compiler, these compiler
options are no longer supported. Instead, use the SEARCH and LSEARCH options to find include files.

Compiler options that were introduced in OS/390 C/C++ or later
When you are compiling pre-OS/390 C/C++ source code, you should treat compiler options that were
introduced in OS/390 or later as new compiler options.

ENUMSIZE compiler option
As of z/OS V1R7 XL C/C++, selected enumerated (enum) type declarations in system header files are
protected to avoid potential execution errors. This allows you to specify the ENUMSIZE compiler option
with a value other than SMALL without risking incorrect mapping of enum data types (for example, if they
were used inside of a structure). For more information, see “ENUMSIZE(SMALL) and protected
enumeration types in system header files” on page 77.

z/OS V1R2 introduced the ENUMSIZE option as a means for controlling the size of enumeration types. The
default setting, ENUMSIZE(SMALL), provides the same behavior that occurred in previous releases of the
compiler.

If you want to continue to use the ENUMSIZE option, it is recommended that the same setting be used for
the whole application; otherwise, you might find inconsistencies when the same enumeration type is
declared in different compilation units. Use the #pragma enum, if necessary, to control the size of
individual enumeration types (especially in common header files).

Changes in compiler option functionality

HALT compiler option
As of C/C++ for MVS/ESA V3R2 compiler, the C++ compiler does not accept 33 as a valid parameter for
the HALT compiler option.

HWOPTS compiler option
In AD/Cycle C/370 V1, the HWOPTS compiler option directed the compiler to generate code to take
advantage of different hardware. As of z/OS V1R2 C/C++ compiler, the HWOPTS compiler option is no
longer supported. The replacement for it is the ARCHITECTURE option.

INFO compiler option
As of z/OS V1R2 C/C++, the INFO option default has been changed from NOINFO to INFO(LAN) for C++.

As of z/OS V1R6 C/C++, the INFO option is supported by the C compiler as well as the C++ compiler.

Note: The CHECKOUT C compiler option will continue to be supported for compatibility with earlier
releases only.

18 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

INLINE compiler option
For C, the default for the INLINE compiler option was changed to 100 ACUs (Abstract Code Units) in the
C/C++ for MVS/ESA compiler. Hence, with C/C++ for MVS/ESA V3R2, OS/390 C/C++, and z/OS XL C/C++
compilers, the default is 100 ACUs. In the past, the default was 250 ACUs.

For C++, the z/OS V1R1 and earlier compilers did not accept the INLINE option but did perform inlining at
OPT with a fixed value of 100 for the threshold and 2000 for the limit. As of z/OS V1R2, the C++ compiler
accepts the INLINE option, with defaults of 100 and 1000 for the threshold and limit, respectively. As a
result of this change, code that used to be inlined may no longer be inlined due to the decrease in the limit
from 2000 to 1000 ACUs.

LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2) compiler option and
macro redefinitions
As of z/OS V1R7 XL C, the treatment of macro redefinitions has changed. For LANGLVL(ANSI),
LANGLVL(SAA), or LANGLVL(SAAL2), the XL C compiler will issue a severe message instead of a warning
message when a macro is redefined to a value that is different from the first definition.

#define COUNT 1
#define COUNT 2 /* error */

Figure 4. Macro redefinition

Note: Compare the treatment of macro redefinitions for these LANGLVL sub-options with that for
“LANGLVL(EXTENDED) compiler option and macro redefinitions” on page 19.

LANGLVL(EXTENDED) compiler option and macro redefinitions
As of z/OS V1R7 XL C, you can redefine a macro that has not been first undefined with
LANGLVL(EXTENDED).

#define COUNT 1
#define COUNT 2

int main () {
 return COUNT;
}

Figure 5. Macro redefinition under LANGLVL(EXTENDED)

With z/OS V1R6 C and previous C compilers, this test returns 1. As of z/OS V1R7 XL C, this test returns 2.
In both cases, the following warning message is issued:

CCN3236 Macro name macro_name has been redefined

where macro_name is COUNT in this example.

You can use the SUPPRESS(CCN3236) option to suppress this warning message. Alternatively, you can
use the SEVERITY(I(CCN3236)) option to decrease the severity of the message to informational.

Note: Compare the treatment of macro redefinitions for LANGLVL(EXTENDED) with that for
“LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2) compiler option and macro redefinitions” on page
19.

LOCALE compiler option
As of z/OS V1R9 XL C/C++, the __LOCALE__ macro is defined to the name of the compile-time locale. If
you specified LOCALE(strinf string literal), the compiler uses the runtime function setlocale(LC_ALL "string
literal") to determine the name of the compile-time locale. If you do not use the LOCALE compiler option,
the macro is undefined.

Chapter 4. Compile-time issues with pre-OS/390 C/C++ programs 19

Prior to z/OS V1R9 XL C/C++, the __LOCALE__ macro was defined to "" when the LOCALE option was
specified without a suboption.

OPTIMIZE optimization level mapping
As compilers are developed, the OPTIMIZE optimization levels are remapped.

In the IBM C/370 compilers, OPTIMIZE was mapped to OPT(1).

In the IBM AD/Cycle C/370 compilers:

• OPT(0) was mapped to NOOPT
• OPT and OPT(1) were mapped to OPT(1)
• OPT(2) was mapped to OPT(2)

In the C/C++ for MVS/ESA V3R2 compiler and the OS/390 V1R1 compiler:

• OPT(0) was mapped to NOOPT
• OPT, OPT(1) and OPT(2) were mapped to OPT

In the OS/390(r) V1R2, V1R3, V2R4, and V2R5 C/C++ compilers:

• OPT(0) mapped to NOOPT
• OPT and OPT(1) mapped to OPT(1)
• OPT(2) mapped to OPT(2)

As of OS/390(r) V2R6 C/C++:

• OPT(0) maps to NOOPT
• OPT, OPT(1) and OPT(2) map to OPT(2)

As of z/OS V1R5 C/C++, OPT(3) provides the compiler's highest and most aggressive level of optimization.
OPT(3) is recommended only when the desire for runtime improvement outweighs the concern for
minimizing compilation resources.

SEARCH and LSEARCH compiler options
Prior to C/C++ for MVS/ESA V3R2 compilers, if you used the LSEARCH option more than once, the
compiler would only search the locations specified for the last LSEARCH option.

As of C/C++ for MVS/ESA V3R2 compilers (including z/OS XL C/C++ compiler), the compiler searches all of
the locations specified for all of the SEARCH options, from the point of the last NOSEARCH option.
Previously, only the locations specified for the last SEARCH option were searched.

SQL compiler option and SQL EXEC statements
For migration information about using the SQL compiler option, see Chapter 20, “Migration issues with
earlier C/C++ applications that use DB2,” on page 119

TEST compiler option
As of the OS/390 C/C++ compilers, the default for the PATH suboption of the TEST option has changed
from NOPATH to PATH. Also, the INLINE option is ignored when the TEST option is in effect at OPT(0), but
the INLINE option is no longer ignored if OPT(1), OPT(2), or OPT(3) is in effect.

As of C/C++ MVS™ V3R2 compiler, the following restriction applies to the TEST compiler option: The
maximum number of lines in a single source file cannot exceed 131,072. If you exceed this limit, the
results from the Debug Tool and Language Environment dump services are undefined.

As of z/OS V1R6 C/C++, when using the c89/c++ utility, the -g flag has changed from specifying the TEST
option to DEBUG(FORMAT(DWARF)). For more information, see “Debug format specification” on page
81.

20 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Note: Under ILP32 only, you can use the environment variable {_DEBUG_FORMAT} to determine the
debug format (DWARF or ISD) to which the -g flag option is translated. For information about this
environment variable and the c89/c++ utility, refer to c89 — Compiler invocation using host environment
variables in z/OS XL C/C++ User's Guide.

Changes that affect compiler invocations
When you invoke the compiler, you should be aware of potential problems in the following areas:

• “IPA compiler option and very large applications” on page 21
• “Customized JCL and the CXX format” on page 21
• “CBCI and CBCXI procedures in JCL” on page 21

IPA compiler option and very large applications
As of z/OS V1R12 XL C/C++, when using the IPA compiler option to compile very large applications, you
might need to increase the size of the work file associated with SYSUTIP DD in the IPA Link step. If you
are linking the application in a z/OS UNIX environment, you can control the size of this work file with the
_CCN_IPA_WORK_SPACE environment variable. If particularly large source files are compiled with IPA,
the default size of the compile-time work files might also need to be increased. These can be modified via
the prefix_WORK_SPACE environment variables.

Customized JCL and the CXX format
The CBCC, CBCCL, and CBCCLG procedures, which compile C++ code, include parameter CXX when the
following compilers are used:

• C/C++ for MVS/ESA V3R2
• OS/390 C/C++
• z/OS C/C++

If you have written your own JCL to compile a C++ program, you must include this parameter; otherwise,
the C compiler is invoked.

When you pass options to the compiler, you must specify parameter CXX. You must use the following
format to specify options:

runtime options/CXX compiler options

CBCI and CBCXI procedures in JCL
As of z/OS V1R5 C/C++ compiler, the CBCI and CBCXI procedures contain the variable CLBPRFX. If you
have any JCL that uses these procedures, you must either customize these procedures (for example, at
installation time) or modify your JCL to provide a value for CLBPRFX.

Changes that affect SYSLIB DD cards
If your batch job uses a SYSLIB concatenation to search for files, remove those job steps and use the
SEARCH compiler option instead.

Change in SCLBH logical record length
As of z/OS V1R2 C/C++ compiler, the logical record length for the SCLBH data sets is increased from 80
bytes to 120 bytes. Because of this change, the SYSLIB DD card (shown in Figure 6 on page 22) that
specifies library search paths no longer works, and must be removed from your JCL. In its place, you must
use the SEARCH compiler option.

Chapter 4. Compile-time issues with pre-OS/390 C/C++ programs 21

Example: See the following example.

SEARCH(//'CEE.SCEEH.+',//'CBC.SCLBH.+')

Using the SEARCH compiler option instead of a SYSLIB concatenation allows the C/C++ compiler to
search for files based on both file name and file type.

//SYSLIB DD DSN=CEE.SCEEH.H,DISP=SHR
// DD DSN=CEE.SCEEH.SYS.H,DISP=SHR
// DD DSN=CBC.SCLBH.H,DISP=SHR

Figure 6. Example of SYSLIB DD cards that must be removed as of z/OS V1R2 C/C++ compiler

22 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 5. Bind-time migration issues with pre-
OS/390 C/C++ programs

This information helps you understand compatibility issues related to binding or linking executable C/C++
programs from applications that predate IBM OS/390 C/C++ compiler.

The output of a prelinking, linking, or binding process depends on where the programs are stored:

• When the programs are stored in a PDS, the output is a load module.
• When the programs are stored in a PDSE or in UNIX System Services files, the output is a program

object.

For more information, see Prelinking and linking z/OS XL C/C++ programs and Binding z/OS XL C/C++
programs in z/OS XL C/C++ User's Guide.

Note: The terms in these topics that are associated with linking (bind, binding, link, link-edit) refer to the
process of creating an executable program from object modules.

Generally, pre-OS/390 C/C++ load modules or programs execute successfully under z/OS V2R4 without
relinking. This information highlights exceptions and shows how to solve specific problems in
compatibility.

Note: If you are not sure which libraries were used to link an executable program, see “Library release
level in use” on page 23.

Executable program compatibility problems requiring source changes are discussed in Chapter 3, “Source
code compatibility issues with pre-OS/390 C/C++ programs,” on page 13.

When you use z/OS V2R4 XL C/C++ to bind programs that were last linked as part of pre-OS/390 C/C++
applications, be aware the following information:

• “Binder invocation changes” on page 25
• “Changes due to customizations of the runtime environment” on page 25
• “Incompatibilities in external references” on page 26
• “Requirements for relinking C/370 modules that invoke Debug Tool” on page 26
• “C/370 modules with interlanguage calls (ILC)” on page 26

Also see “Common library initialization compatibility issues with C/370 modules” on page 35.

Library release level in use
The __librel() function is a System/370 extension to SAA C. It returns the release level of the library
that your program is using, in a 32-bit integer. With Language Environment services, a field containing a
number that represents the library product.

The __librel() return value is a 32-bit integer intended to be viewed in hexadecimal format as shown
in Table 5 on page 23. The hexadecimal value is interpreted as 0xPVRRMMMM, where:

• The first hex digit P represents the product.
• The second hex digit V represents the version.
• The third and fourth hex digits RR represent the release.
• The fifth through eighth hex digits MMMM represent the modification level.

Table 5. Return values for the __librel() function

Product librel value

C/370 V2R2 0x02020000

© Copyright IBM Corp. 1996, 2019 23

Table 5. Return values for the __librel() function (continued)

Product librel value

Language Environment V1R5 0x11050000

OS/390 V1R1

Note: The _librel return value for OS/390 V1R1,
5645-001 is the same as it is for Language
Environment V1R5 runtime libraries.

0x11050000

OS/390 V1R2 0x21020000

OS/390 V1R3 0x21030000

OS/390 V2R4 0x22040000

OS/390 V2R6 0x22060000

OS/390 V2R7 0x22070000

OS/390 V2R8 0x22080000

OS/390 V2R9 0x22090000

OS/390 V2R10 0x220A0000

z/OS V1R1 0x220A0000

z/OS V1R2 0x41020000

z/OS V1R3 0x41030000

z/OS V1R4 0x41040000

z/OS V1R5 0x41050000

z/OS V1R6 0x41060000

z/OS V1R7 0x41070000

z/OS V1R8 0x41080000

z/OS V1R9 0x41090000

z/OS V1R10 0x410A0000

z/OS V1R11 0x410B0000

z/OS V1R12 0x410C0000

z/OS V1R13 0x410D0000

z/OS V2R1 0x42010000

z/OS V2R2 0x42020000

z/OS V2R3 0x42030000

In C/370 V2, the high-order 8 bits were used to return the version number. Now these 8 bits are divided
into two fields. The first 4 bits contain the product number and the second 4 bits contain the version
number.

You must modify programs that use the information returned from __librel(). For more information on
__librel() — Query release level, see z/OS XL C/C++ Runtime Library Reference.

24 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Binder invocation changes
If your application behaves unexpectedly after you relink the pre-OS/390 C/C++ modules and it includes
user-developed exit routines, be aware that rules of precedence have changed.

When you bind programs that were previously compiled with an OS/390 compiler and library, you should
also be aware that the following migration issues could also apply to your binder invocations:

• “Namespace pollution binder errors” on page 87
• “Program modules from an earlier release” on page 87

Impact of changes to CC EXEC invocation syntax
As of z/OS V1R2 C/C++ compiler, there are changes in the CC EXEC invocation syntax.

At customization time, your system programmer can modify the CC EXEC to accept:

• Only the original syntax (the one supported by compilers before C/C++ for MVS/ESA V3R2).
• Only the updated syntax.
• Both syntaxes.

The CC EXEC should be customized to accept only the updated syntax.

If the CC EXEC is customized to accept both the original and additional invocations, you must choose to
use either the original invocations or the updated invocations. You cannot invoke the CC command by
using a mixture of both syntaxes. Be aware that the original syntax does not support UNIX System
Services files provided with z/OS UNIX System Services files.

Refer to the z/OS Program Directory in the z/OS Internet library (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosInternetLibrary) for more information about installation and customization, and
to the z/OS XL C/C++ User's Guide for more information about Compiler options.

Changes due to customizations of the runtime environment
Your installation of z/OS V2R4 XL C/C++ might have been customized in ways that could affect application
behavior at bind-time.

User-developed exit routines
If your application behaves unexpectedly after you relink the pre-OS/390 C/C++ modules and if it
includes user-developed exit routines, be aware that rules of precedence have changed. If both
CEEBXITA and IBMBXITA are present in a relinked C/370 module, CEEBXITA will have precedence over
IBMBXITA.

Abnormal termination exit routines and dump formats
With Language Environment services in a batch environment, abnormal termination exit routine
CEEBDATX is automatically linked at installation time.

This change affects you if you have supplied, or need to supply, your own exit routine. The sample exit
routine had been available in the sample library provided with IBM AD/Cycle LE/370 V1R3. It
automatically generates a system dump (with abend code 4039) whenever an abnormal termination
occurs.

You can trigger the dump by ensuring that SYSUDUMP is defined in the GO step of the JCL that you are
using (for example, by including the statement SYSUDUMP DD SYSOUT=*).

Note: As of C/C++ for MVS/ESA V3R2, the standard JCL procedures shipped with the compiler do not
include SYSUDUMP.

If SYSUDUMP is not included in your JCL, or is defined as DUMMY, the dump will be suppressed.

Chapter 5. Bind-time migration issues with pre-OS/390 C/C++ programs 25

http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

Incompatibilities in external references
As of z/OS V1R3 C/C++ compiler, external names (such as entry points and external references) can be up
to 32,767 bytes long.

As of z/OS V1R2 C/C++ compiler, the binder imposes a limit of 1024 characters for the length of external
names. Both the OS/390 C++ compiler and z/OS C++ compiler might generate mangled names that are
longer than this limit. This problem is more likely to occur when using the Standard Template Library with
the z/OS V1R2 C++ compiler.

If linking programs generates mangled names that exceed the limit, do one of the following actions:

• Reduce the length of the C++ class names.
• Use the #pragma map directive to map the long name to a short one.
• For NOXPLINK applications, use the prelinker.

Requirements for relinking C/370 modules that invoke Debug Tool
If your C/370 application has any C/C++ modules that reference the C/370 library code @@CTEST, you
cannot execute them under z/OS V2R4 until you:

1. Replace the @@CTEST objects, as described in “Programs that require the C370 Common Library
environment” on page 29 and in “Linkage editor control statements for modules that contain calls to
COBOL routines” on page 27.

2. Relink all modules that contain calls to ctest().

C/370 modules with interlanguage calls (ILC)
Table 6 on page 26 outlines when a relink of ILC applications is required, based on languages found in
the executable program: If you have multiple languages in the executable program, then the sum of the
restrictions applies. For example: if you have C, PL/I and Fortran in the executable program, then it should
be relinked because Fortran needs to be relinked. Refer to z/OS Language Environment Writing
Interlanguage Communication Applications for more information.

Table 6. Migrations that require relinking

Language Relink required

Assembler No

PL/I No

Fortran Yes

COBOL Yes

Note: If the C/370 ILC application is built (relinked)
after the PTF for APAR PN74931 is applied, no
relink is required to run under z/OS V2R4.
Otherwise a relink is required.

Interlanguage calls between assembler and PL/I language modules
Programs that contain interlanguage calls to and from assembler or PL/I language modules do not need to
be relinked.

Function calls between C and Fortran modules
For applications that use Language Environment services, Fortran/C interlanguage calls were not
supported prior to the Language Environment V1R5 release and C/C++ for MVS/ESA. Before you can use

26 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Fortran/C ILC applications with Language Environment V1R5 or later, you must relink all Fortran/C ILC
applications that contain pre-Language Environment C or Fortran library routines.

Before you relink those applications, be aware of the following constraints:

• You can run them with z/OS V2R4 XL C/C++ compiler only after they are relinked.
• You cannot continue to run them with the C/370 library after they are relinked.

Function calls to and from COBOL modules
The Fortran ILC rules apply to programs that contain interlanguage calls between C/370 and COBOL,
unless you relink them with the C/370 V2R1 or V2R2 library that has the PTF for APAR PN74931 applied.
This PTF replaces the C/370 V2R1 and V2R2 link-edit stubs so that they tolerate Language Environment
service calls. After your application is relinked using the modified C/370 V2R1 or V2R2 stubs, you can run
the application with any of the following runtime environments:

• C/370 V2R1 runtime library
• C/370 V2R2 runtime library
• Language Environment runtime libraries

If you run applications with interlanguage calls (ILC) to or from COBOL without applying the PTF for APAR
PN74931 and then relinking the C/370 programs that contain the ILC, be aware of the following
constraints:

• You can run those applications with z/OS V2R4 only after they are relinked.
• You cannot continue to run those applications with the C/370 library after they are relinked.

Compatibility with earlier and later releases
The PTF for APAR PN74931 replaces the link-edit stubs so that they tolerate Language Environment
service calls. After your application is relinked using the modified C/370 V2, you can run the application
with the C/370 V2R1 runtime library, the C/370 V2R2 runtime library, or the Language Environment
runtime libraries.

Before you can relink your C/370-COBOL ILC application with Language Environment services only, you
must replace the old library objects @@C2CBL and @@CBL2C, as described in “Programs that require the
C370 Common Library environment” on page 29 and “Linkage editor control statements for modules
that contain calls to COBOL routines” on page 27. After you replace those objects, the affected modules
will be executable only with Language Environment services.

Impact of changes in packaging of language libraries
As of z/OS V1R6, Language Environment runtime libraries contain more modules than the pre-Language
Environment libraries. For example, all of the Language Environment C/C++ language libraries are
packaged in both SCEERUN and SCEERUN2, instead of SCEERUN only.

The impact of these packaging changes for pre-OS/390 C/C++ applications is that certain Language
Environment modules can invade user-defined name spaces. If a program uses modules that are the
same as those used for Language Environment module names (such as fetch()), you must ensure that
the program link libraries are loaded before the Language Environment libraries.

Linkage editor control statements for modules that contain calls to COBOL
routines
This topic lists the linkage editor control statements required to relink modules that contain ILCs between
C and COBOL, or between C and Fortran. The object modules are compatible with the Language
Environment service modules; however, the ILC linkage between the applications and the library has
changed. You must relink these applications using the JCL shown in Figure 7 on page 30 and the control
statements that fit your requirements from the following list. The INCLUDE SYSLIB(@@CTDLI) is

Chapter 5. Bind-time migration issues with pre-OS/390 C/C++ programs 27

necessary only if your program will invoke IBM IMS facilities using the z/OS XL C library function ctdli()
and if the z/OS XL C function was called from a COBOL main program.

Control statements for various combinations of ILCs and compiler options are as follows. The modules
referenced by SYSLMOD contain the routines to be relinked.

1. C main() statically calling COBOL routine B1 or dynamically calling the COBOL routine through the
use of fetch(), where B1 was compiled with the RES option. Relink the C module:

 MODE AMODE(31),RMODE(ANY)
 INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
 INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
 INCLUDE SYSLIB(@@C2CBL) REQUIRED FOR C CALLING COBOL
 INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
 INCLUDE SYSLMOD(SAMP1)
 ENTRY CEESTART MAIN ENTRY POINT
 NAME SAMP1(R)

2. C main() statically calling COBOL routine B2 or dynamically calling the COBOL routine through the
use of fetch(), where B2 was compiled with the NORES option. Relink the C module:

 MODE AMODE(24),RMODE(24)
 INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
 INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
 INCLUDE SYSLIB(@@C2CBL) REQUIRED FOR C CALLING COBOL
 INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
 INCLUDE SYSLIB(IGZENRI) REQUIRED FOR COBOL with NORES
 INCLUDE SYSLMOD(SAMP2)
 ENTRY CEESTART MAIN ENTRY POINT
 NAME SAMP2(R)

3. C main() fetches a C1 function that statically calls a COBOL routine B1 compiled with the RES option.
Relink the C module:

 MODE AMODE(31),RMODE(ANY)
 INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
 INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
 INCLUDE SYSLIB(@@C2CBL) REQUIRED FOR C CALLING COBOL
 INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
 INCLUDE SYSLMOD(SAMP3)
 ENTRY C1 ENTRY POINT TO FETCHED ROUTINE
 NAME SAMP3(R)

4. C main() fetches a C1 function that statically calls a COBOL routine B1 that is compiled with the
NORES option. Relink the C module:

 MODE AMODE(24),RMODE(24)
 INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
 INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
 INCLUDE SYSLIB(@@C2CBL) REQUIRED FOR C CALLING COBOL
 INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
 INCLUDE SYSLIB(IGZENRI) REQUIRED FOR COBOL with NORES
 INCLUDE SYSLMOD(SAMP4)
 ENTRY C1 ENTRY POINT TO FETCHED ROUTINE
 NAME SAMP4(R)

5. A COBOL main CBLMAIN compiled with the RES option statically or dynamically calls a C1 function.
Relink the COBOL module:

 MODE AMODE(31),RMODE(ANY)
 INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
 INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
 INCLUDE SYSLIB(IGZEBST)
 INCLUDE SYSLIB(@@CBL2C) REQUIRED FOR COBOL CALLING C
 INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
 INCLUDE SYSLMOD(SAMP5)
 ENTRY CBLRTN COBOL ENTRY POINT
 NAME SAMP5(R)

6. A COBOL main CBLMAIN compiled with the NORES option statically or dynamically calls a C1 function.
Relink the COBOL module:

28 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

 MODE AMODE(24),RMODE(24)
 INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
 INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
 INCLUDE SYSLIB(IGZENRI)
 INCLUDE SYSLIB(@@CBL2C) REQUIRED FOR COBOL CALLING C
 INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
 INCLUDE SYSLMOD(SAMP6)
 ENTRY CBLRTN COBOL ENTRY POINT
 NAME SAMP6(R)

7. C main() calls a Fortran routine. Relink the C module:

 INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
 INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
 INCLUDE SYSLIB(@@CTOF) REQUIRED FOR C CALLING Fortran
 INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
 INCLUDE SYSLMOD(SAMP7)
 ENTRY CEESTART MAIN ENTRY POINT
 NAME SAMP7(R)

8. A Fortran main() calls a C function. Relink the C module:

 INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
 INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
 INCLUDE SYSLIB(@@FTOC) REQUIRED FOR Fortran CALLING C
 INCLUDE SYSLIB(@@CTDLI) REQUIRED FOR ILC & IMS
 INCLUDE SYSLMOD(SAMP8)
 ENTRY CEESTART MAIN ENTRY POINT
 NAME SAMP8(R)

For other related Fortran considerations, see AFHWLG — Link and run a program written in Fortran in
z/OS Language Environment Programming Guide.

Programs that require the C370 Common Library environment
Some legacy modules will require the C/370 Common Library environment unless they have been
converted to use Language Environment services. These incompatible modules might, for example,
contain ILCs to COBOL or use the library function ctest() to invoke the Debug Tool.

There are several methods of converting C/370 modules to use Language Environment services.

These methods are:

• Link from the original objects, using Language Environment services. The EDCSTART and CEEROOTB
modules must be explicitly included.

• Relink the C/370 program, using the Language Environment CSECT replacement. The EDCSTART and
CEEROOTB modules must be explicitly included.

Figure 7 on page 30 shows an example of a job that uses this method. The job converts the C/370
program by relinking it and explicitly including the Language Environment CEESTART module, so that it
replaces the C/370 CEESTART module.

This is a general-purpose job. The comments show the other include statements that are necessary if
certain calls are present in the code. Refer to “Linkage editor control statements for modules that
contain calls to COBOL routines” on page 27 for the specific control statements that are necessary for
different kinds of ILCs with COBOL.

Chapter 5. Bind-time migration issues with pre-OS/390 C/C++ programs 29

//Jobcard information
//*
//**//
//*RELINK C/370 V2 USER MODULE FOR Language Environment *//
//**//
//*
//*
//LINK EXEC PGM=HEWL,PARM='RMODE=ANY,AMODE=31,MAP,LIST'
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR
//SYSLMOD DD DSN=TSUSER1.A.LOAD,DISP=SHR
//SYSUT1 DD UNIT=VIO,SPACE=(CYL,(10,10))
//SYSLIN DD *
 INCLUDE SYSLIB(EDCSTART) ALWAYS NEEDED
 INCLUDE SYSLIB(CEEROOTB) ALWAYS NEEDED
 INCLUDE SYSLIB(@@CTEST) NEEDED ONLY IF CTEST CALLS ARE PRESENT
 INCLUDE SYSLIB(@@C2CBL) NEEDED ONLY IF CALLS ARE MADE TO COBOL
 INCLUDE SYSLIB(@@CBL2C) NEEDED ONLY IF CALLS ARE MADE FROM COBOL
 INCLUDE SYSLMOD(HELLO)
 ENTRY CEESTART
 NAME HELLO(R)
/*

Figure 7. Link job for converting programs
• For modules that have a C main() procedure:

1. Replace the C/370 program by recompiling the source (if available).
2. Recompile the source containing the main() procedure with the z/OS V2R4 XL C/C++ compiler.
3. Relink the objects with Language Environment services.

Note: This ensures that CEESTART uses the Language Environment initialization scheme. This is an
alternative to including EDCSTART explicitly when linking from objects.

30 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 6. Runtime migration issues with pre-OS/390
C/C++ applications

When you use IBM z/OS V2R4 XL C/C++ to run applications that were most recently executed prior to IBM
OS/390 C/C++ compilers, be aware of the following migration issues:

• “Retention of pre-OS/390 runtime behavior” on page 31
• “Runtime library messages” on page 31
• “Changes that affect customized JCL procedures” on page 32
• “Changes in runtime option specification” on page 33
• “Runtime library compatibility issues with pre-OS/390 applications” on page 34
• “Hardware and OS exceptions” on page 37
• “Resource allocation and memory management migration issues” on page 37

Retention of pre-OS/390 runtime behavior
When your program is using Language Environment services, you can use the ENVAR runtime option to
specify the values of environment variables at execution time. You can use some environment variables to
specify the original runtime behavior for particular items. The following setting specifies the original
runtime behavior for the greatest number of items:

ENVAR("_EDC_COMPAT=32767")

Alternatively, you can add a call to the setenv() function, either in the CEEBINT High-Level Language
exit routine or in your main() program. If you use CEEBINT only, you will need to relink your application.
If you add a call to setenv() in the main() function, you must recompile the program and then relink
your application. For more information, refer to setenv() in z/OS XL C/C++ Runtime Library Reference and
to Using environment variables in z/OS XL C/C++ Programming Guide.

Runtime library messages
There are differences between pre-OS/390 and Language Environment runtime messages. Some
messages have been added and some have been deleted; the contents of others have been changed. Any
application that is affected by the format or contents of these messages must be updated accordingly.

Note: Well-formed code should not depend on message contents or message numbers.

Refer to z/OS Language Environment Debugging Guide for details on runtime messages and return codes.

Return codes and messages
Since C/370 V2, library return codes and messages have been changed. Either JCL, CLISTs and EXECs
that are affected by them must be changed accordingly or the CEEBXITA exit routine must be customized
to emulate the old return codes. C/370 V2 return codes ranged from 0 to 999 but the Language
Environment return codes have a different range. Refer to z/OS XL C/C++ Messages for more information.

Examples: See the following examples.

• Return codes greater than 4095 are returned as modulo 4095 return codes.
• The return code for an abort is now 2000; it was 1000.
• The return code for an unhandled SIGFPE, SIGILL, or SIGSEGV condition is now 3000; it was 2000.

For detailed information, refer to z/OS Language Environment Debugging Guide.

© Copyright IBM Corp. 1996, 2019 31

Error conditions that cause runtime messages
In C/370 V2, if an error was detected with the parameters being passed to the main program, the program
terminated with a return code of 8 and a message indicating the reason why the program was not run. For
example, if there was an error in the redirection parameters, the message would indicate that the program
had terminated because of a redirection error.

Under z/OS V2R4 XL C/C++ compiler, the same message will be displayed, but the program will also
terminate with a 4093 abend, reason code 52 (x'34'). For more information about reason codes see z/OS
Language Environment Debugging Guide.

Prefixes of perror() and strerror() messages
All Language Environment perror() and strerror() messages in C contain a prefix. (In C/370 V2,
there were no prefixes to these messages.) The prefix is EDCxxxxa, where xxxx is a number (always 5xxx)
and the a is either I, E, or S. See z/OS Language Environment Runtime Messages for a list of these
messages.

Language specification for messages
Instead of specifying a messages data set for the SYSMSGS ddname, you must now use the NATLANG
runtime option. If you specify a data set for the SYSMSGS ddname, it will be ignored.

Note: For information about the NATLANG runtime option, see z/OS Language Environment Customization
and the z/OS Language Environment Programming Reference.

User-developed exit routines
With Language Environment services in a batch environment, abnormal termination exit routine
CEEBDATX is automatically linked at installation time.

This change affects you if you have supplied, or need to supply, your own exit routine. The sample exit
routine had been available in the sample library provided with IBM AD/Cycle LE/370 V1R3. It
automatically generates a system dump (with abend code 4039) whenever an abnormal termination
occurs.

You can trigger the dump by ensuring that SYSUDUMP is defined in the GO step of the JCL that you are
using (for example, by including the statement SYSUDUMP DD SYSOUT=*).

Note: As of C/C++ for MVS/ESA V3R2, the standard JCL procedures shipped with the compiler do not
include SYSUDUMP.

If SYSUDUMP is not included in your JCL, or is defined as DUMMY, the dump will be suppressed.

Changes that affect customized JCL procedures
This topic describes changes that may affect your JCL procedures, CLISTs and EXECs.

Changes in data set names
The names of IBM-supplied data sets may change from one release to another. see z/OS Program
Directory in the z/OS Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosInternetLibrary) for more information on data set names.

Arguments that contain a slash
You must prefix the arguments with a slash if you use Language Environment services and:

• There are no runtime options.
• The input arguments passed to main() contain a slash.

JCL, CLISTs, and EXECs that are affected must be changed accordingly.

32 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

Differences in standard streams
There is no automatic association of Language Environment ddnames SYSTERM, SYSERR, SYSPRINT with
the stderr function. In batch processes, you must use command line redirection of the type 1>&2 if you
want stderr and stdout to share a device.

In C/370 V2, you could override the destination of error messages by redirecting stderr. The destination
of all Language Environment messages is determined by the MSGFILE runtime option. See Checking
which runtime options are in effect in the z/OS Language Environment Programming Guide for more
information.

Dump generation
You can generate a dump by ensuring that SYSUDUMP is defined in the GO step of the JCL that you are
using (for example, by including the statement SYSUDUMP DD SYSOUT=*). If SYSUDUMP is not included
in your JCL, or is defined as DUMMY, the dump will be suppressed. As of C/C++ for MVS/ESA V3 compiler,
the standard JCL procedures shipped with the compiler do not include SYSUDUMP.

Changes in runtime option specification
This topic describes changes that might affect your specification of runtime options. For information
about using pragmas in your source code to specify runtime options, see “The #pragma runopts directive”
on page 13.

Runtime options lists
When passing only runtime options to a C/370 V2 program, you did not have to end the arguments with a
slash (/). When passing runtime options to a Language Environment program, you must end the
arguments with a slash.

Obsolete runtime options
The C/370 runtime options are mapped to Language Environment equivalents. However, if you do not use
the Language Environment options, during execution you will get a warning message which cannot be
suppressed. JCL, CLISTs and EXECs that are affected by these differences must be changed accordingly.

Use the Language Environment equivalent for the C/370 V2 runtime options on the command line and in
#pragma runopts.

ISASIZE/ISAINC becomes STACK

LANGUAGE becomes NATLANG

REPORT becomes RPTSTG

SPIE/STAE becomes TRAP

NONIPTSTACK|NONONIPTSTACK becomes XPLINK

Return codes for abnormal enclave terminations
As of OS/390 V2R9, the default option for ABTERMENC is ABEND instead of RETCODE. If your program
depends on the default behavior of ABTERMENC to be RETCODE, you must change the setting in
CEEDOPT (CEECOPT for CICS). For details about changing CEEDOPT and CEECOPT, refer to z/OS Language
Environment Customization.

Abnormal terminations and the TRAP runtime option
STAE and SPIE runtime options have been replaced with the TRAP runtime option. IBM recommends that
you use the TRAP(ON,SPIE) option, not STAE and SPIE. However, for ease of migration, the STAE and SPIE
options are supported as long as the TRAP option is not explicitly specified.

Chapter 6. Runtime migration issues with pre-OS/390 C/C++ applications 33

TRAP(ON) must be in effect for the ABTERMENC runtime option to have effect. For more information, refer
to ABTERMENC and TRAP in z/OS Language Environment Programming Reference.

Default heap allocations
The default size and increment for Language Environment HEAP runtime option differ from those of the
C/370 V2 HEAP runtime option. The C/370 V2 defaults were 4K size and 4K increment.

The Language Environment defaults are:

• For CICS applications: HEAP(32K,32K,ANYWHERE,KEEP,8K,4K)
• For non-CICS applications: HEAP(4K,4080,ANYWHERE,KEEP,4K,4080)

The amount of heap storage allocated and incremented below the 16M line is determined by the following
Language Environment parameters:

• initsz24.
• incrsz24.

For information about these parameters, see z/OS Language Environment Programming Reference.

HEAP parameter specification
In IBM C/370 V2, only the first two of the four parameters for the HEAP option were positional. The
keyword parameters could be specified if the first two were omitted. All Language Environment
parameters are positional. To specify the KEEP parameter only, you must enter HEAP(,,,KEEP).

Default stack allocations
The Language Environment STACK option defaults for size and increment differ from the defaults in C/370
V2, which were 0K size and 0K increment.

Language Environment STACK option defaults are:

• For non-CICS, non-XPLINK applications: STACK(128K,128K,ANYWHERE,KEEP,512K,128K)
• For non-CICS, XPLINK applications: STACK(512K,128K,ANYWHERE,KEEP,512K,128K)
• For CICS, non-XPLINK applications: STACK(4K,4080,ANYWHERE,KEEP,4K,4080)
• For CICS, XPLINK applications: STACK(4K,4080,ANYWHERE,KEEP,4K,4080)

STACK parameter specification
All Language Environment STACK parameters are positional. In other words, the keyword parameter could
be specified if the first two were omitted. To specify only ANYWHERE you must enter:
STACK(,,ANYWHERE).

Note: In C/370 V2 , only the first two parameters were positional.

XPLINK downward-growing stack and the THREADSTACK runtime option
As of OS/390 V2R10, the THREADSTACK runtime option replaced the NONIPTSTACK and
NONONIPTSTACK options. The OS/390 V2R10 options are still accepted, but an information message will
be issued, telling you to switch to the THREADSTACK option.

Be aware that the OS/390 V2R10 options do not support specification of the initial and increment sizes of
the XPLINK downward-growing stack. For more information about the THREADSTACK runtime option,
refer to z/OS Language Environment Customization.

Runtime library compatibility issues with pre-OS/390 applications
Changes in runtime libraries might cause problems when you run pre-OS/390 C/C++ applications. Be
aware of the following issues:

34 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

• “Changes to the putenv() function and POSIX compliance” on page 35
• “UCMAPS and UCS-2 and UTF-8 converters” on page 35
• “Common library initialization compatibility issues with C/370 modules” on page 35
• “Internationalization issues in POSIX and non-POSIX applications” on page 36

Changes to the putenv() function and POSIX compliance
As of z/OS V1R5 C/C++, the function putenv() places the string passed to putenv() directly into the
array of environment variables. This behavior assures compliance with the POSIX standard.

Prior to z/OS V1R5 C/C++, the string used to define the environment variable passed into putenv() was
not added to the array of environment variables. Instead, the system copied the string into system-
allocated storage.

To allow the POSIX-compliant behavior of putenv(), do nothing; it’s now the default condition.

To restore the previous behavior of putenv(), follow these steps:

1. Ensure that the environment variable, _EDC_PUTENV_COPY, is available on your pre-z/OS V1R5
system.

2. Set the environment variable _EDC_PUTENV_COPY to "YES".

For additional information, see:

• z/OS XL C/C++ Runtime Library Reference
• _EDC_PUTENV_COPY in z/OS XL C/C++ Programming Guide

UCMAPS and UCS-2 and UTF-8 converters
As of OS/390 V2R9, the compiler supported direct use of the UCS-2 and UTF-8 converters; the tables
generated by the processing of UCMAPS by the uconvdef utility are no longer used. This is a migration
issue if you modified UCMAPS to use the UCS-2 and UTF-8 converters. If you still need to use the
modifications that you made to UCMAPS, you will now need to set the _ICONV_UCS2 environment
variable to "O". For more information about the _ICONV_UCS2 environment variable, refer to z/OS XL C/C+
+ Programming Guide.

Common library initialization compatibility issues with C/370 modules
Both Language Environment modules and C/370 modules use static code and dynamic code. Static code
sections are emitted or bound with the main program object. Dynamic code sections are loaded and
executed by the static component.

The sequence of events during initialization for C/370 modules differs from that for Language
Environment modules. The key static code for the CEESTART object controls initialization at execution
time. The C/370 CEESTART object contents differ from those of the Language Environment CEESTART
object Its contents differ between the products. The Language Environment key dynamic code for the
CEESTART object is CEEBINIT, which is stored in SCEERUN. The C/370 R2 key dynamic code for the
CEESTART object is IBMBLIIA, which is a Common Library part stored in SIBMLINK. The Common Library
is used by the C/370 V2 libraries.

Initialization schemes
The tables in this topic describe the initialization schemes for the CEESTART and IBMBLIIA modules:

• Table 7 on page 36 describes the initialization scheme for C/370 V2 modules.
• Table 8 on page 36 describes the initialization scheme for Language Environment modules.
• Table 9 on page 36 describes the Language Environment initialization scheme for C/370 programs.

The following describes the C/370 V2 initialization scheme:

Chapter 6. Runtime migration issues with pre-OS/390 C/C++ applications 35

Table 7. C/370 V2 initialization scheme

Stage Description

Load The C/370 V2 CEESTART loads IBMBLIIA.

Initialize IBMBLIIA initializes the Common Library.

Run The Common Library runs C/370-specific initialization.

Call The main program is called.

The following describes the initialization scheme:

Table 8. Language Environment initialization scheme

Stage Description

Load CEESTART loads CEEBINIT.

Initialize CEEBINIT initializes Language Environment services.

Run The Language Environment runtime library runs the C-specific initialization.

Call The main program is called.

Table 9. Language Environment initialization scheme for C/370 programs

Stage Description

Load C/370 V2 CEESTART loads CEEBLIIA (as IBMBLIIA).

Initialize CEEBLIIA (IBMBLIIA) initializes Language Environment services.

Run The Language Environment runtime library runs the C-specific initialization.

Call The main program is called.

In Table 9 on page 36, compatibility with C/370 V2 programs depends upon the program's ability to
intercept the initialization sequence at the start of the dynamic code and to initialize the Language
Environment services at that point. This interception is achieved by the addition of a part named
CEEBLIIA, which has been assigned the alias IBMBLIIA. This provides "initialization compatibility".

Special considerations: CEEBLIIA and IBMBLIIA
The only way to control which environment is initialized for a given C/370 V2 program (when CEEBLIIA is
assigned the alias of IBMBLIIA) is to correctly arrange the concatenation of libraries.

The version of IBMBLIIA that is found first determines the services (Language Environment or Common
Library) that are initialized.

• If you intend to initialize the Common Library services, ensure that SIBMLINK is concatenated before
SCEERUN.

• If you intend to initialize the Language Environment services, ensure that SCEERUN is concatenated
before SIBMLINK.

Internationalization issues in POSIX and non-POSIX applications
You should customize your locale information. Otherwise, in rare cases, you may encounter errors. In a
POSIX application, you can supply time zone and alternative time (for example, daylight) information with
the TZ environment variable. In a non-POSIX application, you can supply this information with the _TZ
environment variable. If no _TZ environment variable is defined for a POSIX application or no _TZ
environment variable is defined for a non-POSIX application, any customized information provided by the
LC_TOD locale category is used. By setting the TZ environment variable for a POSIX application, or the _TZ

36 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

environment variable for a non-POSIX application, or by providing customized time zone or daylight
information in an LC_TOD locale category, you allow the time functions to preserve both time and date,
correctly adjusting for alternative time on a given date.

Refer to z/OS XL C/C++ Programming Guide for more information about both Using environment variables
and Customizing a locale.

Hardware and OS exceptions
The following points identify migration and coexistence considerations for user applications:

• CICS programs that use Language Environment services are enabled for decimal overflow exceptions.
• The C packed-decimal support routines are not supported in an environment that exploits asynchronous

events.

Decimal overflow exceptions
Language Environment services support the packed decimal overflow exception using IBM Z®.

The value of the program mask in the program status word (PSW) is 4 (decimal overflow enabled). See
“Unexpected SIGFPE exceptions” on page 37 and “Explicit program mask manipulations” on page 15.

SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 exceptions
SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 exceptions are handled differently for C/370 V2 and
Language Environment programs.

The differences or incompatibilities are:

• The defaults for the SIGINT, SIGTERM, SIGUSR1, and SIGUSR2 signals changed in AD/Cycle LE/370
V1R3 from what they were in C/370 V1 and V2 and AD/Cycle LE/370 V1R1 and V2R2. These changes
were carried into the Language Environment runtime environment. In the C/370 library and AD/Cycle
LE/370 V1R1 and V1R2, the defaults for SIGINT, SIGUSR1, and SIGUSR2 were to ignore the signals. As
of AD/Cycle LE/370 V1R3, the defaults are to terminate the program and issue a return code of 3000.
For SIGTERM, the default has always been to terminate the program. The return code is "3000"; before,
it was "0".

• Language Environment programs that terminate abnormally will not drive the atexit list.

Unexpected SIGFPE exceptions
Decimal overflow conditions were masked in the C/370 library prior to V2R2. Diagnosis of overflow
conditions were enabled when the packed decimal data type was introduced prior to C/370 V2R2.

As of z/OS V1R7 XL C/C++ compiler, load modules that had generated decimal overflow conditions might
raise unexpected SIGFPE exceptions. You cannot migrate such modules to the current without altering
the source.

Note: These unexpected exceptions are most likely to occur in mixed language modules, particularly
those using C and assembler code where the assembler code explicitly manipulates the program mask.
See “Explicit program mask manipulations” on page 15.

Resource allocation and memory management migration issues
Incompatibilities in memory management might cause unexpected results in the output of your program.
In your source code, you should be aware of potential problems when you use any operators or structures
that re-allocate resources during application execution.

Chapter 6. Runtime migration issues with pre-OS/390 C/C++ applications 37

The realloc() function
If Language Environment services are initialized when the realloc() function is used, a new storage
area is obtained and the data is copied. Under C/370 V2, the realloc() function will reuse an area
unless the function needs a larger area.

If your program uses Language Environment services, ensure that the source code does not depend on
the C/370 V2 behavior of the realloc() function.

38 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 7. Input and output operations compatibility

Language Environment V1R5 input and output support differs from that provided by pre-OS/390 libraries.
If your programs last performed input and output operations with a pre-OS/390 C/C++ compiler, you
should read the changes listed herein.

Note: In this information, references to "previous releases" or "previous behavior" apply either to pre-
OS/390 compilers or to a runtime environment that precedes the Language Environment V1R5 release.

You will generally be able to migrate "well-behaved" programs: programs that do not rely on
undocumented behavior, restrictions, or invalid behaviors of previous releases. For example, if library
documentation specified only that a return code was a negative value, and your code relies on that value
being "-3", your code is not well-behaved and is relying on undocumented behavior.

Another example of a program that is not well-behaved is one that specifies recfm=F for a terminal file
and depends on the runtime environment to ignore this parameter, as it did previously.

You might need to change even well-behaved code under circumstances described in the following topics.

Migration issues when opening pre-OS/390 files
When you call the fopen() or freopen() library function, you can specify each parameter only once. If
you specify any keyword parameter in the mode string more than once, the function call fails. Previously,
you could specify more than one instance of a parameter.

The library no longer supports uppercase open modes on calls to fopen() or freopen(). You must
specify, for example, rb instead of RB, to conform to the ANSI/ISO standard.

You cannot open a non-HFS file more than once for a write operation. Previous releases allowed you, in
some cases, to open a file for write more than once. For example, you could open a file by its data set
name and then again by its ddname. This is no longer possible for non-HFS files, and is not supported.

Previously, fopen() allowed spaces and commas as delimiters for mode string parameters. Only
commas are allowed now.

If you are using PDSs or PDSEs, you cannot specify any spaces before the member name.

Migration issues when writing to pre-OS/390 files
Write operations to files opened in binary mode are no longer deferred. Previously, the library did not
write a block that held nn bytes out to the system until the user wrote nn+1 bytes to the block. Language
Environment services follow the rules for full buffering, described in z/OS XL C/C++ Programming Guide,
and write data as soon as the block is full. The nn bytes are still written to the file, the only difference is in
the timing of when it is done.

For non-terminal files, the backspace character ('\b') is now placed into files as is. Previously, it backed
up the file position to the beginning of the line.

For all text I/O, truncation for fwrite() is now handled the same way that it is handled for puts() and
fputs(). If you write more data than a record can hold, and your output data contains any of the
terminating control characters, '\n' or '\r' (or '\f', if you are using ASA), the library still truncates
extra data; however, recognizing that the text line is complete, the library writes subsequent data to the
next record boundary. Previously, fwrite() stopped immediately after the library began truncating data,
so that you had to add a control character before writing any more data.

You can now partially update a record in a file opened with type=record. Previous services returned an
error if you tried to make a partial update to a record. Now, a record is updated up to the number of
characters you specify, and the remaining characters are untouched. The next update is to the next
record.

© Copyright IBM Corp. 1996, 2019 39

Language Environment services block files more efficiently than some previous services did. Applications
that depend on the creation of short blocks may fail.

The behavior of ASA files when you close them has changed. In previous releases, this is what happened:

Written to file Read from file after fclose(), fopen()

abc\n\n\n abc\n\n\n\n

abc\n\n abc\n\n\n

abc\n abc\n

Starting with this release, you read from the file what you wrote to it. For example:

Written to file Read from file after fclose(), fopen()

abc\n\n\n abc\n\n\n

abc\n\n abc\n\n

abc\n abc\n

With previous services, writing a single new-line character to a new file created an empty file under MVS.
Language Environment services treat a single new-line character written to a new file as a special case,
because it is the last new-line character of the file. A single blank is written to the file. When this file is
read, there are two new-line characters instead of one. There are also two new-line characters if two new-
line characters were written to the file.

The behavior of appending to ASA files has also changed. The following table shows what you get from an
ASA file when you:

1. Open an ASA file for write.
2. Write abc.
3. Close the file.
4. Append xyz to the ASA file.
5. Open the same ASA file for read.

Table 10. Appending to ASA files

abc Written to file, fclose()
then append xyz

What you read from file after fclose(), fopen()

Previous release New release

abc ==> xyz \nabc\nxyz\n same as previous release

abc ==> \nxyz \nabc\nxyz\n \nabc\n\nxyz\n

abc ==> \rxyz \nabc\rxyz\n \nabc\n\rxyz\n

abc\n ==> xyz \nabc\nxyz\n same as previous release

abc\n ==> \nxyz \nabc\nxyz\n \nabc\n\nxyz\n

abc\n ==> \rxyz \nabc\rxyz\n \nabc\n\rxyz\n

abc\n\n ==> xyz \nabc\n\n\nxyz\n \nabc\n\nxyz\n

abc\n\n ==> \nxyz \nabc\n\n\nxyz\n same as previous release

abc\n\n ==> \rxyz \nabc\n\n\rxyz\n same as previous release

40 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Changes in DBCS string behavior
As of z/OS V1R8, I/O checks the value of MB_CUR_MAX to determine whether to interpret DBCS
characters within a file.

When MB_CUR_MAX is 4, you can no longer place control characters in the middle of output DBCS strings
for interpretation. Control characters within DBCS strings are treated as DBCS data. This is true for
terminals as well. Previous products split the DBCS string at the '\n' (new-line) control character
position by adding an SI (Shift In) control character at the new-line position, displaying the line on the
terminal, and then adding an SO (Shift Out) control character before the data following the new-line
character. If MB_CUR_MAX is 1, the library interprets control characters within any string, but does not
interpret DBCS strings. SO and SI characters are treated as ordinary characters.

When you are writing DBCS data to text files, if there are multiple SO (Shift Out) control-character write
operations with no intervening SI (Shift In) control character, the library discards the SO characters, and
marks that a truncation error has occurred. Previous products allowed multiple SO control-character write
operations with no intervening SI control character without issuing an error condition.

When you are writing DBCS data to text files and specify an odd number of DBCS bytes before an SI
control character, the last DBCS character is padded with a X'FE' byte. If a SIGIOERR handler exists, it is
triggered. Previous products allowed incorrectly placed SI control-character write operations to complete
without any indication of an error.

Now, when an SO has been issued to indicate the beginning of a DBCS string within a text file, the DBCS
must terminate within the record. The record will have both an SO and an SI.

Changes in stdout and stderr file positioning
The Language Environment inheritance model for standard streams supports repositioning. Previously, if
you opened stdout or stderr in update mode, and then called another C program by using the ANSI-
style system() function, the program that you called inherited the standard streams, but moved the file
position for stdout or stderr to the end of the file. Now, the library does not move the file position to
the end of the file. For text files, the position is moved only to the nearest record boundary not before the
current position. This is consistent with the way stdin behaves for text files.

The values for L_tmpnam and FILENAME_MAX have been changed:

Constant Old values New values

L_tmpnam 47 1024

FILENAME_MAX 57 1024

The names produced by the tmpnam() library function are now different. Any code that depends on the
internal structure of these names may fail.

The behavior of fgetpos(), fseek() and fflush() following a call to ungetc() has changed.
Previously, these functions have all ignored characters pushed back by ungetc() and have considered
the file to be at the position where the first ungetc() character was pushed back. Also, ftell()
acknowledged characters pushed back by ungetc() by backing up one position if there was a character
pushed back. Now:

• fgetpos() behaves just as ftell()does.
• When a seek from the current position (SEEK_CUR) is performed, fseek() accounts for any ungetc()

character before moving, using the user-supplied offset.
• fflush() moves the position back one character for every character that was pushed back.

If you have applications that depend on the previous behavior of fgetpos(), fseek(), or fflush(),
you may use the _EDC_COMPAT environment variable so that source code need not change to
compensate for the change in behavior.

Chapter 7. Input and output operations compatibility 41

For OS I/O to and from files opened in text mode, the ftell() encoding system now supports higher
blocking factors for smaller block sizes. In general, you should not rely on ftell() values generated by
code you developed using previous releases of the library. You can try ftell() values taken in previous
releases for files opened in text or binary format if you set the environment variable _EDC_COMPAT before
you call fopen() or freopen(). Do not rely on ftell() values saved across program boundaries.

For record I/O, ftell() now returns the relative record number instead of an encoded offset from the
beginning of the file. You can supply the relative record number without acquiring it from ftell(). You
cannot use old ftell() values for record I/O, regardless of the setting of _EDC_COMPAT.

After you have called ftell(), calls to setbuf() or setvbuf() might fail. Applications should never
call I/O functions between calls to fopen() or freopen() and calls to the functions that control
buffering.

Note: _EDC_COMPAT is described in z/OS XL C/C++ Programming Guide.

Behavior changes when closing and reopening ASA files
The behavior of ASA files when you close and reopen them is now consistent: For more information about
using ASA files, refer to z/OS XL C/C++ Programming Guide.

Table 11. Closing and reopening ASA files

Written to file

Physical record after close

Previous behavior New behavior

abc Char abc (1) same as previous release

Hex 4888
0123

(1)

abc\n Char abc (1) same as previous release

Hex 4888
0123

(1)

abc\n\n Char abc
0

(1)
(2)

Char abc (1)
(2)

Hex 4888
0123
F
0

(1)

(2)

Hex 4888
0123
4
0

(1)

(2)

abc\n\n\n Char abc
-

(1)
(2)

Char abc (1)
(2)

Hex 4888
0123
6
0

(1)

(2)

Hex 4888
0123
4
0

(1)
(2)

abc\r Char
abc
+

(1)
(2)

same as previous release

Hex
4888
0123
4
E

(1)

(2)

42 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Table 11. Closing and reopening ASA files (continued)

Written to file

Physical record after close

Previous behavior New behavior

abc\f Char
abc
1

(1)
(2)

same as previous release

Hex
4888
0123
F
1

(1)

(2)

Changes in values returned by the fldata() function
There are minor changes to the values returned by the fldata() library function. It may now return
more specific information in some fields. For more information, refer to fldata() behavior, in z/OS XL C/C++
Programming Guide.

VSAM I/O changes
• The library no longer appends an index key when you read from an RRDS file opened in text or binary

mode.
• RRDS files opened in text or binary mode no longer support setting the access direction to BWD.

Change in allocation of VSAM control blocks and I/O buffers
As of z/OS V1R10, the XL C/C++ compiler instructs VSAM, by default, to allocate control blocks and I/O
buffers above the 16-MB line.

If you determine that this change could be causing a problem, you can use the VSAM JCL parameter AMP
to override the default.

Terminal I/O changes
The library will now use the actual recfm and lrecl specified in the fopen() or freopen() call that
opens a terminal file. Incomplete new records in fixed binary and record files are padded with blank
characters until they are full, and the __recfmF flag is set in the fldata() structure. Previously, MVS
terminals unconditionally set recfm=U. Terminal I/O did not support opening files in fixed format.

The use of an LRECL value in the fopen() or freopen() call that opens a file sets the record length to
the value specified. Previous releases unconditionally set the record length to the default values.

For input text terminals, an input record now has an implicit logical record boundary at LRECL if the size of
the record exceeds LRECL. The character data in excess of LRECL is discarded, and a '\n' (new-line)
character is added at the end of the record boundary. You can now explicitly set the record length of a file
as a parameter on the fopen() call. The old behavior was to allow input text records to span multiple
LRECL blocks.

Binary and record input terminals now flag an end-of-file condition with an empty input record. You can
clear the EOF condition by using the rewind() or clearerr() library function. Previous products did
not allow these terminal types to signal an end-of-file condition. The use of a RECFM value in the
fopen() or freopen() call that opens a file sets the record format to the value specified. Previous
releases unconditionally set the record format to the default values.

When an input terminal requires input from the system, all output terminals with unwritten data are
flushed in a way that groups the data from the different open terminals together, each separated from the

Chapter 7. Input and output operations compatibility 43

other with a single blank character. The old behavior is equivalent to the new behavior, except that two
blank characters separate the data from each output terminal.

44 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Part 3. Migration of OS/390 C/C++ applications to
z/OS V2R4 XL C/C++

OS/390 C/C++ applications were created with one of the following products:

• IBM OS/390 V1R1 C/C++ (reship of IBM C/C++ for MVS/ESA V3R2)
• IBM OS/390 V1R2 or V1R3 C/C++
• IBM OS/390 V2R4, V2R5, V2R6, V2R7, V2R8, V2R9, or V2R10 C/C++
• IBM z/OS V1R1 C/C++ (reship of IBM OS/390 V2R10 C/C++)

Notes:

1. The z/OS V1R1 compiler and library are equivalent to the OS/390 V2R10 compiler and library.
2. The OS/390 V2R5 compiler is equivalent to the OS/390 V2R4 compiler.
3. The OS/390 V1R1 compiler and library are equivalent to the final MVS/ESA compiler and library, and

are described in Part 2, “Migration of pre-OS/390 C/C++ applications to z/OS V2R4 XL C/C++,” on page
11.

Generally, you can bind OS/390 programs successfully with z/OS V2R4 programs without changing source
code, and without recompiling or relinking programs.

The following topics provide information relevant to migrating a OS/390 application to z/OS V2R4 XL C/C+
+:

• Chapter 8, “Source code compatibility issues with OS/390 programs,” on page 47
• Chapter 9, “Compile-time migration issues with OS/390 programs,” on page 49
• Chapter 10, “Bind-time migration issues with OS/390 C/C++ programs,” on page 59
• Chapter 11, “Runtime migration issues with OS/390 C/C++ applications,” on page 61
• Chapter 12, “Migration issues resulting from class library changes between OS/390 C/C++ applications

and Standard C++ library,” on page 63

Notes:

1. If your application uses IBM CICS information or statements, also see Chapter 19, “Migration issues
with earlier C/C++ applications that run CICS statements,” on page 115.

2. If your application uses IBM DB2 information or statements, also see Chapter 20, “Migration issues
with earlier C/C++ applications that use DB2,” on page 119.

© Copyright IBM Corp. 1996, 2019 45

46 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 8. Source code compatibility issues with
OS/390 programs

In general, you can use source programs with the z/OS V2R4 XL C/C++ compiler without modification, if
they were created with an OS/390 compiler and library.

For details on support of Programming languages - C++ (ISO/IEC 14882:2003(E)), see Part 5, “ISO
Standard C++ compliance migration issues,” on page 99.

Note: Some source code compatibility issues can be addressed by modifying runtime options. See
Chapter 11, “Runtime migration issues with OS/390 C/C++ applications,” on page 61.

Overflow processing and code modifications
When a data type conversion causes an overflow (that is, the floating type value is larger than INT_MAX),
the behavior is undefined according to the C Standard. The actual result depends on the ARCHITECTURE
level (the ARCH option), which determines the machine instruction used to do the conversion. For
example, there are input values that would result in a large negative value for ARCH(2) and below, while
the same input would result in a large positive value for ARCH(3) and above.

If overflow processing is important to the program, the code should provide explicit checks.

Table 12. Modifying code to check overflow processing

Example of code that does not check overflow
processing

Example of code that is modified to check overflow
processing

 double x;
 int i;
 /* ... */

 i = x; /* overflow if x is too large */
 /* value of i undefined */

 double x;
 int i;
 if (x < (double) INT_MAX)
 i = x;
 else {
 /* overflow */
 }

.

References to class libraries that are no longer shipped
As of z/OS V1R9, IBM Open Class Library (IOC) dynamic link libraries (DLLs) are no longer shipped with
the z/OS XL C/C++ compiler.

Any source dependency on an IOC DLL must be removed.

For information about the libraries that are supported by the current release, see z/OS XL C/C++ Runtime
Library Reference.

© Copyright IBM Corp. 1996, 2019 47

48 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 9. Compile-time migration issues with
OS/390 programs

When you compile programs that were previously compiled with an OS/390 compiler and library, be
aware of the following migration issues:

• “Changes in compiler listings and messages” on page 49
• “Changes in compiler options” on page 50
• “Changes in IBM data set names” on page 56
• “Introduction of 1998 Standard C++ support” on page 57
• “Changes that affect performance and optimization” on page 57
• “Removal of Model Tool support” on page 58

Changes in compiler listings and messages
From release to release, message contents can change and, for some messages, return codes can change.
Errors can become warnings, and warnings can become errors. You must update any application that is
affected by changes in message contents or return codes. Do not build dependencies on message
contents, message numbers, or return codes. See z/OS XL C/C++ Messages for a list of compiler
messages.

Listing formats, especially the pseudo-assembler parts, will continue to change from release to release.
Do not build dependencies on the structure or content of listings. For information about Using the z/OS XL
C compiler listing or Using the z/OS XL C++ compiler listing for the current release, refer to z/OS XL C/C++
User's Guide.

Debug format specification
As of z/OS V1R6 C/C++, the environment variable _DEBUG_FORMAT can be used with the c89 utility to
specify translation of the -g flag option for 31-bit compilations:

• If _DEBUG_FORMAT equals DWARF (the default), -g is translated to DEBUG(FORMAT(DWARF)).
• If _DEBUG_FORMAT equals ISD, then -g is translated to TEST (the old translation).

For the impact on the runtime environment, see “Debug format and translation of the c89 -g flag option”
on page 61.

For more information about using the c89 utility, see c89 — Compiler invocation using host environment
variables in z/OS XL C/C++ User's Guide.

Language specification for compiler messages
With the C/C++ for MVS/ESA V3R2, OS/390, and z/OS XL C/C++ compilers, the method of specifying the
language for compiler messages has changed. At compile time, instead of specifying message data sets
on the SYSMSGS and SYSXMSGS ddnames, you must now use the NATLANG runtime option. If you specify
data sets for these ddnames, they are ignored.

Note: For information about the NATLANG runtime option, see z/OS Language Environment Customization
and the z/OS Language Environment Programming Reference.

Optimization level mapping and listing content
As of OS/390 V2R6 C/C++ compiler, OPT, OPT(1), and OPT(2) map to OPT(2). The compiler listing no
longer contains the part of the pseudo-assembler listing that was associated with OPT(1). Listing formats,
especially the pseudo-assembler parts, will continue to change from release to release. Do not build

© Copyright IBM Corp. 1996, 2019 49

dependencies on the structure or content of listings. For information about Using the z/OS XL C compiler
listing or Using the z/OS XL C++ compiler listing for the current release, refer to z/OS XL C/C++ User's
Guide.

Macro redefinitions and error messages
As of z/OS V1R7 XL C, the behavior of macro redefinition has changed. For certain language levels, the XL
C compiler will issue a severe error message instead of a warning message when a macro is redefined to a
value that is different from the first definition.

For information about the language levels that are affected, see “LANGLVL(ANSI), LANGLVL(SAA), or
LANGLVL(SAAL2) compiler option and macro redefinitions” on page 53 and “LANGLVL(EXTENDED)
compiler option and macro redefinitions” on page 54.

Changes in compiler options
As the compiler is developed, some options are no longer supported and others undergo functional
changes, such as adjustments in the default values.

Compiler options that are no longer supported
As of z/OS V1R2 C/C++ compiler, the following compiler options are no longer supported:

• DECK

The replacement for DECK functionality that routes output to DD:SYSPUNCH is to use
OBJECT(DD:SYSPUNCH).

• GENPCH
• HWOPTS

The replacement for HWOPTS is ARCHITECTURE.
• LANGLVL(COMPAT)
• OMVS

The replacement for OMVS is OE.
• SRCMSG
• SYSLIB

The replacement for SYSLIB is SEARCH.
• SYSPATH

The replacement for SYSPATH is SEARCH.
• USEPCH
• USERLIB

The replacement for USERLIB is LSEARCH.
• USERPATH

The replacement for USERPATH is LSEARCH.

As of OS/390 V2R10 C/C++ compiler, the following SOM-related compiler options are no longer
supported:

• SOM | NOSOM
• SOMEinit | NOSOMEinit
• SOMGs | NOSOMGs
• SOMRo | NOSOMRo
• SOMVolattr | NOSOMVolattr

50 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

• XSominc | NOXSominc

ARCHITECTURE compiler option
As of z/OS V2R3 XL C/C++ compiler, the default value of the ARCHITECTURE compiler option is 10.

As of z/OS V2R2 XL C/C++ compiler, the default value of the ARCHITECTURE compiler option is 8.

As of z/OS V2R1 XL C/C++ compiler, the default value of the ARCHITECTURE compiler option is 7.

As of z/OS V1R6 C/C++ compiler, the default value of the ARCHITECTURE compiler option is 5.

In OS/390 V2R10 to z/OS V1R5 releases, the default value of the ARCHITECTURE compiler option is 2. In
OS/390 V2R9 C/C++ and previous releases, the default value of the ARCHITECTURE compiler option is 0.

ARCHITECTURE level and overflow processing
When a data conversion causes an overflow (for example, the floating type value is larger than INT_MAX),
the behavior is undefined according to the C Standard.

The actual result depends on the ARCHITECTURE level (the ARCH option), which determines the machine
instruction used to do the conversion. For example, there are input values that would result in a large
negative value for ARCH(2) and below, while the same input would result in a large positive value for
ARCH(3) and above.

For more information, see “Overflow processing and code modifications” on page 47.

ARCHITECTURE level and Metal C file-scope header SYSSTATE ARCHLVL
statement
The SYSSTATE ARCHLVL statement in the Metal C file-scope header identifies the minimum hardware
requirement.

Starting from z/OS V2R1 XL C++ compiler, if and only if ARCH(7) or up and OSREL(ZOSV2R1) or higher are
in effect, SYSSTATE ARCHLVL=3; otherwise, SYSSTATE ARCHLVL=2.

ARGPARSE compiler option with Metal
Starting from z/OS V1R13 XL C++ compiler, the ARGPARSE option is supported with the METAL option. For
more information, see ARGPARSE | NOARGPARSE that is documented in z/OS XL C/C++ User's Guide.

ASCII compiler option
As of z/OS V1R10 XL C++ compiler, the Unicode characters that use \U or \u notation are always sensitive
to the ASCII compiler option. When the ASCII option is in effect, those characters are encoded in ASCII,
even when they are found in #pragma comment directives. Prior to z/OS V1R10 XL C++ compiler, all
#pragma comment text strings were encoded in EBCDIC.

CHECKOUT(CAST) compiler option
This suboption instructs the C compiler to check the source code for pointer casting that might affect
optimization (that is, for those castings that violate the ANSI-aliasing rule). For detailed information, refer
to the ANSIALIAS | NOANSIALIAS option in z/OS XL C/C++ User's Guide.

Prior to z/OS V1R2 C/C++ compiler, the compiler issued a warning message whenever this condition was
detected. As of z/OS V1R2 C/C++ compiler, this message is informational. If you want to be alerted by the
compiler that this message has been issued, you can use the HALTONMSG compiler option. The
HALTONMSG option causes the compiler to stop after source code analysis, skip the code generation, and
issue a return code of 12.

Chapter 9. Compile-time migration issues with OS/390 programs 51

DIGRAPH compiler option
As of z/OS V1R2 C/C++ compiler, the DIGRAPH option default for C and C++ has been changed from
NODIGRAPH to DIGRAPH.

ENUMSIZE compiler option
As of z/OS V1R7 XL C/C++, selected enumerated (enum) type declarations in system header files are
protected to avoid potential execution errors. This allows you to specify the ENUMSIZE compiler option
with a value other than SMALL without risking incorrect mapping of enum data types (for example, if they
were used inside of a structure). For more information, see “ENUMSIZE(SMALL) and protected
enumeration types in system header files” on page 77.

z/OS V1R2 introduced the ENUMSIZE option as a means for controlling the size of enumeration types. The
default setting, ENUMSIZE(SMALL), provides the same behavior that occurred in previous releases of the
compiler.

If you want to continue to use the ENUMSIZE option, it is recommended that the same setting be used for
the whole application; otherwise, you might find inconsistencies when the same enumeration type is
declared in different compilation units. Use the #pragma enum, if necessary, to control the size of
individual enumeration types (especially in common header files).

INFO compiler option
As of z/OS V1R2 C/C++, the INFO option default has been changed from NOINFO to INFO(LAN) for C++.

As of z/OS V1R6 C/C++, the INFO option is supported by the C compiler as well as the C++ compiler.

Note: The CHECKOUT C compiler option will continue to be supported for compatibility with earlier
releases only.

INLINE compiler option
For C++, the z/OS V1R1 and earlier compilers did not allow you to change the inlining threshold. These
compilers performed inlining at OPT with a fixed value of 100 for the threshold and 2000 for the limit.

As of z/OS V1R2 C/C++ compiler, the C++ compiler accepts the INLINE option, with defaults of 100 and
1000 for the threshold and limit, respectively. As a result of this change, code that used to be inlined may
no longer be inlined due to the decrease in the limit from 2000 to 1000 ACUs (Abstract Code Units).

As of z/OS V1R11 XL C/C++ compiler, the INLINE option might behave differently from those in the prior
releases because of the implementation of a new inliner. You might find different performances of the
INLINE option in the following ways:

• The functions that get inlined might be different.
• The inline report might look different.

If your application runs slower because functions that get inlined are different, adjust your inlining
settings at high optimization levels, for example, the inlining threshold and the #pragma inline/noinline
directives.

As of z/OS V2R1 XL C/C++ compiler, a virtual function might not be inlined even when the function is
specified with the always_inline attribute. No informational message is issued when a virtual function is
not inlined.

IPA(LINK) compiler option
For detailed information about using IPA(LINK), see The IPA link step in z/OS XL C/C++ User's Guide.

IPA Link step default changes
As of OS/390 V1R3 C/C++ compiler, the following IPA Link step defaults changed:

52 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

• The default optimization level is OPT(1)
• The default is INLINE, unless NOOPT, OPT(0) or NOINLINE is specified.

As of OS/390 V2R6 C/C++ compiler:

• The default optimization level for the IPA Link step is OPT(2).
• The default inlining threshold is 1000 ACUs (Abstract Code Units). With OS/390 C/C++ V1R2 compiler,

the threshold was 100 ACUs.
• The default expansion threshold is 8000 ACUs. With OS/390 C/C++ V1R2 C/C++ compiler, the threshold

was 1000 ACUs.

The IPA(LINK) option and exploitation of 64-bit virtual memory
As of z/OS V1R12 XL C/C++, the compiler component that executes IPA at both compile and link time is a
64-bit application, which will cause an XL C/C++ compiler ABEND if there is insufficient storage. The
default MEMLIMIT system parameter size in the SMFPRMxparmlib member should be at least 3000 MB
for the link, and 512 MB for the compile. The default MEMLIMIT value takes effect whenever the job does
not specify one of the following:

• MEMLIMIT in the JCL JOB or EXEC statement
• REGION=0 in the JCL

Notes:

• The compiler component that executes IPA(LINK) has been a 64-bit application since z/OS V1R8 XL C/C
++ compiler.

• The MEMLIMIT value specified in an IEFUSI exit routine overrides all other MEMLIMIT settings.

The UNIX System Services ulimit command that is provided with z/OS can be used to set the MEMLIMIT
default. For information, see z/OS UNIX System Services Command Reference. For additional information
about the MEMLIMIT system parameter, see z/OS MVS Programming: Extended Addressability Guide.

As of z/OS V1R8 XL C/C++ compiler, the EDCI, EDCXI, EDCQI, CBCI, CBCXI, and CBCQI cataloged
procedures, which are used for IPA Link, contain the variable IMEMLIM, which can be used to override the
default MEMLIMIT value.

IPA object module binary compatibility
Release-to-release binary compatibility is maintained by the z/OS XL C/C++ IPA compilation and IPA link
phases, as follows:

• An object file produced by an IPA compilation which contains IPA object or combined IPA and
conventional object information can be used as input to the IPA link phase of the same or later version/
release of the compiler.

• An object file produced by an IPA compilation which contains IPA object or combined IPA and
conventional object information cannot be used as input by the IPA link phase of an earlier Version/
Release of the compiler. If this is attempted, an error message will be issued by the IPA Link.

• If the IPA object is reproduced by a later IPA compilation, additional optimizations may be performed
and the resulting application program might perform better.

Exception: The IPA object files produced by the OS/390 V1R2 C IPA compilation must by recompiled
from the program source using an OS/390 V1R3 or later C/C++ compiler before you attempt to process
them with the z/OS V2R4 XL C/C++ IPA Link.

LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2) compiler option and
macro redefinitions

As of z/OS V1R7 XL C, the treatment of macro redefinitions has changed. For LANGLVL(ANSI),
LANGLVL(SAA), or LANGLVL(SAAL2), the XL C compiler will issue a severe message instead of a warning
message when a macro is redefined to a value that is different from the first definition.

Chapter 9. Compile-time migration issues with OS/390 programs 53

#define COUNT 1
#define COUNT 2 /* error */

Figure 8. Macro redefinition

Note: Compare the treatment of macro redefinitions for these LANGLVL sub-options with that for
“LANGLVL(EXTENDED) compiler option and macro redefinitions” on page 54.

LANGLVL(EXTENDED) compiler option and macro redefinitions
As of z/OS V1R7 XL C, you can redefine a macro that has not been first undefined with
LANGLVL(EXTENDED).

#define COUNT 1
#define COUNT 2

int main () {
 return COUNT;
}

Figure 9. Macro redefinition under LANGLVL(EXTENDED)

With z/OS V1R6 C and previous C compilers, this test returns 1. As of z/OS V1R7 XL C, this test returns 2.
In both cases, the following warning message is issued:

CCN3236 Macro name macro_name has been redefined

where macro_name is COUNT in this example.

You can use the SUPPRESS(CCN3236) option to suppress this warning message. Alternatively, you can
use the SEVERITY(I(CCN3236)) option to decrease the severity of the message to informational.

Note: Compare the treatment of macro redefinitions for LANGLVL(EXTENDED) with that for
“LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2) compiler option and macro redefinitions” on page
53LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2).

LANGLVL(LONGLONG) compiler option
The long long data type is supported as a native data type when the LANGLVL(LONGLONG) option is
turned on. This option is turned on by default by the compiler option LANGLVL(EXTENDED). The
_LONG_LONG macro is predefined for all language levels other than ANSI.

As of z/OS V1R6 C/C++ compiler, when LANGLVL(LONGLONG) is turned on, the _LONG_LONG macro is
defined by the compiler.

Attention: If you have defined your own _LONG_LONG macro in previous compiler releases, you
must remove this user-defined macro before you compile your program.

LOCALE compiler option
As of z/OS V1R9 XL C/C++, the __LOCALE__ macro is defined to the name of the compile-time locale. If
you specified LOCALE(strinf string literal), the compiler uses the runtime function setlocale(LC_ALL "string
literal") to determine the name of the compile-time locale. If you do not use the LOCALE compiler option,
the macro is undefined.

Prior to z/OS V1R9 XL C/C++, the __LOCALE__ macro was defined to "" when the LOCALE option was
specified without a suboption.

M compiler option
Before z/OS V1R11, the stand-alone makedepend utility was used to analyze source files and determine
source dependencies. As of z/OS V1R11, the M (-qmakedep) compiler option is introduced, and this

54 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

compiler option is recommended to be used to obtain similar information. Specifying the M compiler
option is equivalent to specifying the -qmakedep with no suboption.

The M compiler option is used to generate a make description file as a side-effect of the compilation
process. The description file contains a rule or rules suitable for make that describes the dependencies of
the main compilation source file.

On z/OS systems, the M compiler option resolves a number of complexities that is not properly managed
by the compiler-independent makedepend utility, thereby improving the accuracy of the dependency
information.

The MF option is used in conjunction with the M option and specifies the name of the file where the
dependency information is generated, or the location of the file, or both. The MF option has no effect
unless make dependency information is generated.

The MG option is used in conjunction with the M option and instructs the compiler to include missing
header files into the make dependencies file.

The MT option is used in conjunction with the M option and sets the target to the <target_name>
instead of the default target name. This is useful in cases where the target is not in the same directory as
the source or when the same dependency rule applies to more than one target.

The MQ option is the same as the MT option except that the MQ option escapes any characters that have
special meaning in make.

For detailed information, refer to MAKEDEP compiler option in z/OS XL C/C++ User's Guide.

OPTIMIZE compiler option
In the OS/390 V1R2, V1R3, V2R4, and V2R5 C/C++ compilers:

• OPT(0) mapped to NOOPT
• OPT and OPT(1) mapped to OPT(1)
• OPT(2) mapped to OPT(2)

As of OS/390 V2R6 C/C++:

• OPT(0) maps to NOOPT
• OPT, OPT(1) and OPT(2) map to OPT(2)

As of z/OS V1R5 C/C++, OPT(3) provides the compiler's highest and most aggressive level of optimization.
OPT(3) is recommended only when the desire for runtime improvement outweighs the concern for
minimizing compilation resources.

NORENT compiler option
In previous releases of the compiler, #pragma variable (name, RENT) had no effect if the compiler
option was NORENT. As of OS/390 V2R9 XL C/C++ compiler, a variable can be reentrant even if the
compiler option is NORENT. For more information, see “Reentrant variables when the compiler option is
NORENT” on page 59.

ROSTRING compiler option
As of z/OS V1R2 C/C++ compiler, the ROSTRING option default for C is changed from NOROSTRING to
ROSTRING. The default for C++ has always been ROSTRING.

ROSTRING informs the compiler that string literals are read-only, thus allowing more freedom for the
compiler to handle string literals. If you are not sure whether your program modifies string literals or not,
specify the NOROSTRING compiler option.

Chapter 9. Compile-time migration issues with OS/390 programs 55

ROCONST compiler option
As of z/OS V1R2 C/C++ compiler, the ROCONST option default for C++ is changed from NOROCONST to
ROCONST. The default for C remains NOROCONST.

As of OS/390 V2R10 C/C++ compiler, #pragma variable (name, NORENT) is accepted if the
ROCONST option is turned on, and the variable is const-qualified and not initialized with an address. In
previous releases, #pragma variable (name, NORENT) was ignored for static variables.

Related information
• ROCONST | NOROCONST in z/OS XL C/C++ User's Guide.
• ROCONST in z/OS XL C/C++ Programming Guide.

STATICINLINE compiler option
As of z/OS V1R2 C/C++ compiler, the compiler supports the STATICINLINE compiler option. The default is
NOSTATICINLINE. Specify STATICINLINE for compatibility with C++ compilers provided by previous
versions of the compiler. For detailed information, refer to STATICINLINE compiler option in z/OS XL C/C+
+ User's Guide.

SQL compiler option and SQL EXEC statements
See Chapter 20, “Migration issues with earlier C/C++ applications that use DB2,” on page 119.

TARGET compiler option
As of z/OS V2R3 XL C/C++, the earliest release that can be targeted is z/OS V2R1. For more information
about the TARGET compiler option, refer to z/OS XL C/C++ User's Guide.

See also “Program modules from an earlier release” on page 87.

TEST compiler option
As of z/OS V1R6 C/C++, when using the c89/c++ utility, the -g flag has changed from specifying the TEST
option to DEBUG(FORMAT(DWARF)). For more information, see “Debug format specification” on page
81.

Note: Under ILP32 only, you can use the environment variable {_DEBUG_FORMAT} to determine the
debug format (DWARF or ISD) to which the -g flag option is translated. For information about this
environment variable and the c89/c++ utility, refer to c89 — Compiler invocation using host environment
variables in z/OS XL C/C++ User's Guide.

TUNE compiler option
As of z/OS V2R3 XL C/C++ compiler, the default value of the TUNE compiler option is 10.

As of z/OS V2R2 XL C/C++ compiler, the default value of the TUNE compiler option is 8.

As of z/OS V2R1 XL C/C++ compiler, the default value of the TUNE compiler option is 7.

As of z/OS V1R6 C/C++ compiler, the default value of the TUNE compiler option is 5.

Changes in IBM data set names
The names of IBM-supplied data sets may change from one release to another. See z/OS Program
Directory in the z/OS Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/pages/
zosInternetLibrary) for more information on data set names.

56 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

Introduction of 1998 Standard C++ support
As of z/OS V1R2, the C++ compiler supports Programming languages - C++ (ISO/IEC 14882:1998(E)). See
Part 5, “ISO Standard C++ compliance migration issues,” on page 99 for details.

Changes that affect performance and optimization
When you recompile OS/390 C/C++ programs with z/OS V2R4 XL C/C++ compiler, be aware of changes
that you can make to improve performance.

Addition of the #pragma reachable and #pragma leaves directives
The #pragma reachable and #pragma leaves directives help the optimizer in moving code around
the function call site when exploring opportunities for optimization. Since the addition of these pragmas in
OS/390 V2R9, the optimizer is more aggressive.

For more information on using #pragma reachable and directives, refer to z/OS XL C/C++ Language
Reference.

Changes that affect customized JCL procedures
The following topics apply if the JCL procedures that you are using either have been customized or should
be customized.

Potential increase in memory requirements
Memory requirements for compilation may increase for successive releases as new logic is added. If you
cannot recompile an application that you successfully compiled with a previous release of the compiler,
try increasing the region size. For the current default region size, refer to the z/OS XL C/C++ User's Guide.

As of z/OS V1R12 XL C/C++, when using the IPA compiler option to compile very large applications, you
might need to increase the size of the work file associated with SYSUTIP DD in the IPA Link step. If you
are linking the application in a z/OS UNIX environment, you can control the size of this work file with the
_CCN_IPA_WORK_SPACE environment variable. If particularly large source files are compiled with IPA,
the default size of the compile-time work files might also need to be increased. These can be modified via
the prefix_WORK_SPACE environment variables.

JCL CBCI and CBCXI procedures and the variable CLBPRFX
As of z/OS V1R5 C++ compiler, the CBCI and CBCXI procedures contain the variable CLBPRFX. If you have
any JCL that uses these procedures, either they must customized (for example, at installation time) or you
must modify your JCL to provide a value for CLBPRFX.

Syntax to invoke the CC command
With the C/C++ for MVS/ESA V3R2, OS/390, and z/OS XL C/C++ compilers, you can use a new syntax to
invoke the CC command.

At customization time, your system programmer can customize the CC EXEC to accept only the old syntax
(the one supported by compilers before C/C++ for MVS/ESA V3R2) compiler, only the new syntax, or both
syntaxes.

The CC EXEC should be customized to accept only the new syntax.

If you customize the CC EXEC to accept both the old and new syntaxes, you must invoke it using either the
old or the new syntax, not a mixture of both. Be aware that the old syntax does not support UNIX System
Services files provided with z/OS.

Chapter 9. Compile-time migration issues with OS/390 programs 57

Refer to the z/OS Program Directory in the z/OS Internet library (www.ibm.com/servers/resourcelink/
svc00100.nsf/pages/zosInternetLibrary) for more information about installation and customization, and
to the z/OS XL C/C++ User's Guide for more information about Compiler options.

Removal of Model Tool support
As of OS/390 V2R10 C/C++ compiler, Model Tool is no longer available.

58 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary
http://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary

Chapter 10. Bind-time migration issues with OS/390
C/C++ programs

This information helps application programmers understand and resolve the compatibility issues that
might occur when they relink programs from an OS/390 C/C++ compiler to z/OS V2R4 XL C/C++.

Executable program compatibility problems that require source changes are discussed in Chapter 8,
“Source code compatibility issues with OS/390 programs,” on page 47.

Notes:

1. An executable program is the output of the prelink/link or bind process. For more information, see
Binding z/OS XL C/C++ programs in z/OS XL C/C++ User's Guide.

2. The terms in this topic having to do with linking (bind, binding, link, link-edit) refer to the process of
creating an executable program from object modules.

3. The output of a prelinking, linking, or binding process depends on where the programs are stored:

• When the programs are stored in a PDS, the output is a load module.
• When the programs are stored in a PDSE or in UNIX System Services files, the output is a program

object.

When you bind programs that were previously compiled with an OS/390 compiler and library, be aware of
the following potential migration issues:

• “Reentrant variables when the compiler option is NORENT” on page 59

Reentrant variables when the compiler option is NORENT
If your program includes multithreaded operations, be aware of changes in the behavior of pragma
variables.

In previous releases of the compiler, #pragma variable (name, RENT) had no effect if the compiler
option was NORENT. As of OS/390 V2R9, a variable can be reentrant even if the compiler option is
NORENT.

This change may cause some programs that compiled and linked successfully in previous releases to fail
during link-edit in the current release. This applies if all of the following are true:

• The program is written in C and compiled with the NORENT option
• At least one variable is reentrant
• The program is compiled and linked with the output directed to a PDS and the prelinker was NOT used.

Note: JCL procedures that may have been used to do this in previous releases are: EDCCL, EDCCLG,
EDCL, and EDCLG (not all of these procedures are available, starting with the z/OS V1R7 XL C/C++
compiler).

© Copyright IBM Corp. 1996, 2019 59

60 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 11. Runtime migration issues with OS/390
C/C++ applications

This information helps application programmers understand and resolve the compatibility issues that
might occur when they relink programs from an OS/390 C/C++ compiler to z/OS V2R4 XL C/C++.

When you run applications that were previously compiled with an OS/390 compiler and library, be aware
of the following potential migration issues:

• “Retention of OS/390 runtime behavior” on page 61
• “Debug format and translation of the c89 -g flag option” on page 61
• “Language Environment customization issues” on page 62

Retention of OS/390 runtime behavior
When your program is using Language Environment services, you can use the ENVAR runtime option to
specify the values of environment variables at execution time. You can use some environment variables to
specify the original runtime behavior for particular items. The following setting specifies the original
runtime behavior for the greatest number of items:

ENVAR("_EDC_COMPAT=32767")

Alternatively, you can add a call to the setenv() function, either in the CEEBINT High-Level Language
exit routine or in your main() program. If you use CEEBINT only, you will need to relink your application.
If you add a call to setenv() in the main() function, you must recompile the program and then relink
your application. For more information, refer to setenv() in z/OS XL C/C++ Runtime Library Reference and
to Using environment variables in z/OS XL C/C++ Programming Guide.

Changes to the putenv() function and POSIX compliance
As of z/OS V1R5 C/C++, the function putenv() places the string passed to putenv() directly into the
array of environment variables. This behavior assures compliance with the POSIX standard.

Prior to z/OS V1R5 C/C++, the string used to define the environment variable passed into putenv() was
not added to the array of environment variables. Instead, the system copied the string into system-
allocated storage.

To allow the POSIX-compliant behavior of putenv(), do nothing; it’s now the default condition.

To restore the previous behavior of putenv(), follow these steps:

1. Ensure that the environment variable, _EDC_PUTENV_COPY, is available on your pre-z/OS V1R5
system.

2. Set the environment variable _EDC_PUTENV_COPY to "YES".

For additional information, see:

• z/OS XL C/C++ Runtime Library Reference
• _EDC_PUTENV_COPY in z/OS XL C/C++ Programming Guide

Debug format and translation of the c89 -g flag option
As of z/OS V1R6 C/C++, the environment variable _DEBUG_FORMAT can be used with the c89 utility to
specify translation of the -g flag option for 31-bit compilations:

• If _DEBUG_FORMAT equals DWARF (the default), -g is translated to DEBUG(FORMAT(DWARF)).
• If _DEBUG_FORMAT equals ISD, then -g is translated to TEST (the old translation).

© Copyright IBM Corp. 1996, 2019 61

For the impact on specification of compiler options, see “Debug format specification” on page 81.

For more information about the c89 utility, see c89 — Compiler invocation using host environment
variables in z/OS XL C/C++ User's Guide.

Language Environment customization issues
For detailed information about customizing Language Environment runtime options, libraries, or
processes, refer to z/OS Language Environment Customization.

Change in allocation of VSAM control blocks
As of z/OS V1R10, the XL C/C++ compiler instructs VSAM, by default, to allocate control blocks and I/O
buffers above the 16-MB line.

If you determine that this change could be causing a problem, you can use the VSAM JCL parameter AMP
to override the default.

62 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 12. Migration issues resulting from class
library changes between OS/390 C/C++ applications
and Standard C++ library

Class library changes that have taken place since OS/390 C/C++ applications were developed have
resulted in the following migration issues:

• “Function calls to different libraries” on page 63
• “Removal of IBM Open Class Library support” on page 63
• “Removal of Database Access Class Library utility” on page 63
• “Migration of programs with calls to UNIX System Laboratories I/O Stream Library functions” on page

63

Function calls to different libraries
See “Function calls to different libraries” on page 67.

Removal of IBM Open Class Library support
See “References to class libraries that are no longer shipped” on page 67.

Removal of SOM support
As of OS/390 V2R10 C++ compiler, the IBM System Object Model (SOM) is no longer supported in the C++
compiler.

Removal of Database Access Class Library utility
As of OS/390 V2R4 C++ compiler, the Database Access Class Library utility is no longer available.

Migration of programs with calls to UNIX System Laboratories I/O
Stream Library functions

See “Migration from UNIX System Laboratories I/O Stream Library to Standard C++ I/O Stream Library”
on page 67.

© Copyright IBM Corp. 1996, 2019 63

64 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Part 4. Migration of earlier z/OS C/C++ applications to
z/OS V2R4 XL C/C++

Earlier z/OS C/C++ applications were created with one of the following compilers:

• IBM z/OS V1R1 C/C++ (equivalent to the OS/390 V2R10 compiler)
• IBM z/OS V1R2 C/C++
• IBM z/OS V1R3 C/C++
• IBM z/OS V1R4 C/C++
• IBM z/OS V1R5 C/C++
• IBM z/OS V1R6 C/C++
• IBM z/OS V1R7 XL C/C++
• IBM z/OS V1R8 XL C/C++
• IBM z/OS V1R9 XL C/C++
• IBM z/OS V1R10 XL C/C++
• IBM z/OS V1R11 XL C/C++
• IBM z/OS V1R12 XL C/C++
• IBM z/OS V1R13 XL C/C++
• IBM z/OS V2R1 XL C/C++
• IBM z/OS XL C/C++ V2R1M1 web deliverable
• IBM z/OS XL C/C++ V2R2

Note: The z/OS V1R3 and V1R4 compilers are equivalent to the z/OS V1R2 compiler.

Significant class library changes occurred with releases z/OS V1R5 C/C++ through z/OS V1R9 XL C/C++.
These changes could necessitate changes in your source code.

Notes:

1. If your application uses IBM CICS information or statements, also see Chapter 19, “Migration issues
with earlier C/C++ applications that run CICS statements,” on page 115.

2. If your application uses IBM DB2 information or statements, also see Chapter 20, “Migration issues
with earlier C/C++ applications that use DB2,” on page 119.

The following topics provide information relevant to migrating an earlier z/OS C/C++ application to z/OS
V2R4 XL C/C++:

• Chapter 13, “Source code compatibility issues with earlier z/OS C/C++ programs,” on page 67
• Chapter 14, “Compile-time migration issues with earlier z/OS C/C++ programs,” on page 73
• Chapter 15, “Bind-time migration issues with earlier z/OS C/C++ programs,” on page 87
• Chapter 16, “Runtime migration issues with earlier z/OS C/C++ applications,” on page 91

© Copyright IBM Corp. 1996, 2019 65

66 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 13. Source code compatibility issues with
earlier z/OS C/C++ programs

Significant class library changes have occurred between z/OS V1R5 C/C++ compiler and z/OS V2R4 XL
C/C++ compiler. These changes could necessitate changes in your source code. Otherwise, you can likely
use source programs that were created with one of the earlier z/OS C/C++ compilers without
modification.

Exceptions are highlighted in the following topics:

• “Function calls to different libraries” on page 67
• “References to class libraries that are no longer shipped” on page 67
• “Migration from UNIX System Laboratories I/O Stream Library to Standard C++ I/O Stream Library” on

page 67
• “Standard C++ compliance compatibility issues” on page 68
• “Use of XL C/C++ library functions” on page 68
• “Use of pragmas” on page 71
• “Virtual function declaration and use” on page 71

Note: Some source code compatibility issues can be addressed by modifying runtime options. See
Chapter 11, “Runtime migration issues with OS/390 C/C++ applications,” on page 61.

Function calls to different libraries
While it is possible to use functions from more than one library, (Standard C++ I/O Stream Library, UNIX
System Laboratories I/O Stream Library, and C I/O), it is not recommended because it requires that your
code perform extra tasks. For example, the UNIX System Laboratories I/O Stream Library uses a separate
buffer so you would need to flush the buffer after each call to cout by either setting ios::unitbuf or
calling sync_with_stdio().

You should avoid switching between the I/O Stream Library formatted extraction functions and C
stdio.h library functions whenever possible, and you should also avoid switching between versions of
the I/O Stream Libraries. For more information, see z/OS XL C/C++ Programming Guide.

References to class libraries that are no longer shipped
As of z/OS V1R9, IBM Open Class Library (IOC) dynamic link libraries (DLLs) are no longer shipped with
the z/OS XL C/C++ compiler.

Any source dependency on an IOC DLL must be removed.

For information about the libraries that are supported by the current release, see z/OS XL C/C++ Runtime
Library Reference.

Migration from UNIX System Laboratories I/O Stream Library to
Standard C++ I/O Stream Library

The values for some enumerations differ slightly between the UNIX System Laboratories and Standard C+
+ I/O Stream Library. This may cause problems when migrating programs to the Standard C++ I/O Stream
Library.

The following IOS format flags have been added to the Standard C++ I/O Stream Library:

• boolalpha

© Copyright IBM Corp. 1996, 2019 67

• adjustfield
• basefield
• floatfield

The following IOS format flags have been removed:

• flags for format control: stdio
• flags for open-mode control: nocreate, noreplace, bin
• flags for the io-state control: hardfail

There might be other small differences.

Standard C++ compliance compatibility issues
As of z/OS V1R7, the XL C++ compiler supports Programming languages - C++ (ISO/IEC 14882:2003(E)),
which documents the currently supported Standard C++. For more information, see Part 5, “ISO Standard
C++ compliance migration issues,” on page 99.

Use of XL C/C++ library functions
The use of XL C/C++ library functions can be affected by performance enhancements such as:

• “Timing of processor release by the pthread_yield() function” on page 68
• “New information returned by the getnameinfo() function” on page 68

as well as by changes to external standards, such as:

• “Feature test macros and system header files” on page 69
• “Potential need to include _Ieee754.h” on page 69
• “New definitions exposed by use of the _OPEN_SYS_SOCK_IPV6 macro” on page 69
• “Required changes to fprintf and fscanf strings %D, %DD, and %H” on page 69
• “Changes to the putenv() function and POSIX compliance” on page 70
• “Required changes to fprintf and fscanf strings due to new specifiers for vector types” on page 70

Timing of processor release by the pthread_yield() function
As of z/OS V1R8 XL C/C++ compiler, the _EDC_PTHREAD_YIELD environment variable can be used to
either release the processor immediately, or release the processor after a delay. This change affects both
the pthread_yield() and sched_yield() functions.

In prior releases, control was passed back to the calling thread without releasing the processor whenever
multiple intra-thread calls to pthread_yield() occurred within .01 seconds of one another.

If you want to continue to use the previous internal timing algorithm, use the following command:

_EDC_PTHREAD_YIELD=-1

For information about _EDC_PTHREAD_YIELD and setting environment variables, see Using environment
variables in z/OS XL C/C++ Programming Guide.

For information about the pthread_yield() and sched_yield() functions, see z/OS XL C/C++
Runtime Library Reference.

New information returned by the getnameinfo() function
As of z/OS V1R9 XL C/C++ compiler, invocations of the getnameinfo() function might need to be
modified to handle interface information appended to the host name. Prior to z/OS V1R9, the
getnameinfo() function ignored the zone index value in the input sockaddr_in6 structure.

68 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Ensure that you verify the capability to handle scope information of getnameinfo() invocations that
have the following characteristics:

• The sa argument represents an IPv6 link-local address.
• The sin6_scope_id member of sa is non-zero.

The scope information is returned in the format hostname%interface. The host name is the node name
associated with the IP address in the buffer pointed to by the host argument. By default, the scope
information is the interface name associated with the zone index value.

For information about options for addressing this change, see Communications Server migration actions in
z/OS Upgrade Workflow.

For information about the getnameinfo() function, see z/OS XL C/C++ Runtime Library Reference.

Feature test macros and system header files
You must define the feature test macros that you need before including any system headers.

Feature test macros control which symbols are made visible in a source file (typically a header file). For
detailed information about header files and supported feature test macros, see z/OS XL C/C++ Runtime
Library Reference.

Potential need to include _Ieee754.h
As of z/OS XL C/C++ V1R9 compiler, the <math.h> file (included in the <tgmath.h> header file) no
longer includes the <_Ieee754.h> file, which declares IEEE 754 interfaces.

This change avoids potential namespace pollution. If your code needs any symbols that are defined in
<_Ieee754.h>, you must explicitly include that header file.

For additional information about runtime library support of decimal floating-point data types and
functions, see z/OS XL C/C++ Runtime Library Reference.

New definitions exposed by use of the _OPEN_SYS_SOCK_IPV6 macro
As of z/OS V1R7 XL C++ compiler, recompiling an earlier C/C++ program that uses the
_OPEN_SYS_SOCK_IPV6 feature test macro will expose new definitions in the system header files as well
as new functions in netinet/in.h. These new functions are:

inet6_opt_append() inet6_opt_find() inet6_opt_finish() inet6_opt_get_val()

inet6_opt_init() inet6_opt_next() inet6_opt_set_val() inet6_rth_add()

inet6_rth_getaddr() inet6_rth_init() inet6_rth_reverse() inet6_rth_segments()

inet6_rth_space()

Required changes to fprintf and fscanf strings %D, %DD, and %H
As of z/OS V1R8, XL C/C++ supports decimal floating point size modifiers ("D", "DD", and "H") for the
fprintf and fscanf families of functions. If a percent sign (%) is followed by one of these character
strings, which had no meaning under previous releases of z/OS XL C/C++, the compiler could interpret the
data as a size modifier. Treatment of this condition is undefined and the behavior could be unexpected.

For a description of the potential results, see “Unexpected output from fprintf() or fscanf()” on page 92.

If you are using z/OS V1R9 XL C/C++ compiler and you want the fprintf() and fscanf() families of
functions to produce the same results as your previous compiler, change your source code input as shown
in Table 13 on page 70.

Chapter 13. Source code compatibility issues with earlier z/OS C/C++ programs 69

Table 13. Example: Code change for fprintf/fscanf character strings "%D", "%DD", and "%H"

Existing statement Modification required under z/OS V2R4 XL C/C++

printf(“This results in a 10%Deduction.\n”); printf(“This results in a 10%%Deduction.\n”);

Changes to the putenv() function and POSIX compliance
As of z/OS V1R5 C/C++, the function putenv() places the string passed to putenv() directly into the
array of environment variables. This behavior assures compliance with the POSIX standard.

Prior to z/OS V1R5 C/C++, the string used to define the environment variable passed into putenv() was
not added to the array of environment variables. Instead, the system copied the string into system-
allocated storage.

To allow the POSIX-compliant behavior of putenv(), do nothing; it’s now the default condition.

To restore the previous behavior of putenv(), follow these steps:

1. Ensure that the environment variable, _EDC_PUTENV_COPY, is available on your pre-z/OS V1R5
system.

2. Set the environment variable _EDC_PUTENV_COPY to "YES".

For additional information, see:

• z/OS XL C/C++ Runtime Library Reference
• _EDC_PUTENV_COPY in z/OS XL C/C++ Programming Guide

Required changes to fprintf and fscanf strings due to new specifiers for
vector types

As of z/OS V2R1 (with APAR PI20843), XL C/C++ runtime supports new specifiers for the fprintf and
fscanf families of functions for vector data types. The newly introduced specifiers include separator flags
"," (comma), ";" (semicolon), ":" (colon), and "_" (underscore) and optional prefixes "v", "vh", "hv", "vl", "lv",
"vll", "llv", "vL", and "Lv". If a percent sign (%) is followed by one of these character strings, which had no
meaning under previous releases, the runtime could interpret the data as a vector type specifier.
Treatment of this condition is undefined and the behavior could be unexpected.

For a description of the potential results, see “Unexpected output from fprintf() or fscanf()” on page 92.
If you want the same results for these strings as the previous releases, change the code to avoid using the
percent sign (%) followed by aforementioned character strings in format string parameter of fprintf and
fscanf function families.

C99 support of long long data type
As of z/OS V1R7 XL C/C++ compiler, when you recompile an application that uses long long support,
you might experience problems if the application does one of the following actions:

• Uses a compiler designed to support C99
• Does not ask for extended features

If an application currently uses the LANGLVL(LONGLONG) compiler option to get at the long long data
type, and also uses certain non-standard long long macros, recompiling with z/OS V2R4 XL C/C++ may
cause compiler error messages to be issued because these non-standard definitions are hidden unless
both LANGLVL(LONGLONG) and LANGLVL(EXTENDED) are in effect.

If an application currently uses LANGLVL(EXTENDED), the non-standard definitions will continue to be
exposed since extended features are requested. For those applications that want to use a compiler
designed to support C99, but do not want extended features, change the source code to use the C99
standard long long macros, as shown in Table 14 on page 71.

70 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Table 14. C99 standard macros to replace non-standard long long macros that cause z/OS V2R4 errors

Non-standard long long macros C99 standard long long macros

LONGLONG_MIN LLONG_MIN

LONGLONG_MAX LLONG_MAX

ULONGLONG_MAX ULLONG_MAX

The definitions in Table 14 on page 71 are commonly used with the following functions:

• llabs()
• the following long long numeric conversion functions

– strtoll()
– strtoull()
– wcstoll()
– wcstoull()

Use of pragmas
Functionality of pragmas can change from release to release, or under different circumstances. Be aware
of the following migration issues:

• “Application of #pragma unroll() as of z/OS V1R7 XL C/C++” on page 71
• “Unexpected C++ output with #pragma pack(2)” on page 71

Application of #pragma unroll() as of z/OS V1R7 XL C/C++
As of z/OS V1R7 XL C/C++ compiler, the #pragma unroll() directive works only with for loops.

If your code applies the #pragma unroll() directive to a while or a do loop, the compiler ignores the
pragma directive and generates a warning message.

For detailed information about unrolling loops, refer to any or all of the following related documents:

• z/OS XL C/C++ Language Reference
• z/OS XL C/C++ Programming Guide
• z/OS XL C/C++ User's Guide

Unexpected C++ output with #pragma pack(2)
An aggregate, which contains char data type members only, has natural alignment of one byte. XL C
retains the natural one-byte alignment but when #pragma pack(2) is applied to an aggregate, its
alignment increases to two bytes.

If XL C and XL C++ program objects need to be compatible, do not use #pragma pack(2) in your XL C or
XL C++ code.

Note: You can use the sizeof operator to test the output whenever #pragma pack(2) is used.

For more information about #pragma pack(2), refer to the discussion of the #pragma pack directive
twobyte option in z/OS XL C/C++ Language Reference.

Virtual function declaration and use
Figure 10 on page 72 shows a program that, as of z/OS V1R6 C/C++ compiler, would generate an
exception under the IBM object model because the call to a member function version() on the object
_b occurs before the declaration of _b.

Chapter 13. Source code compatibility issues with earlier z/OS C/C++ programs 71

#include

class A {
 public:
 A(int i) : v(i) {}
 virtual int version() {return 0;} 1 ;
 private: int v;
};

class B:virtual public A {
 public:
 B(int i) : A(i) {}
};

extern B _b; 2
static int ver = _b.version(); 3
B _b(1); 4

int main() {
 printf("version: %d\n", ver);
 return 0;
}

Notes:

1. The virtual keyword tells the compiler that the function is virtual and it can be overloaded by any
derived class of A.

2. A reference to externally defined _b of type B.
3. The value of static global variable ver is initialized with the value returned by member function
version() called by object _b. An exception will be raised because the object _b is not fully
constructed at the time of the call to the member function version().

4. The declaration of the polymorphic object _b occurs after its use on the previous line. This line should
precede the definition of ver to ensure that the virtual function version() is found at run time.

Figure 10. Example that highlights sequence of statements to declare and call a virtual function

72 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 14. Compile-time migration issues with
earlier z/OS C/C++ programs

When you compile earlier z/OS C/C++ programs with z/OS V2R4 XL C/C++, be aware of the following
information:

• “Changes in compiler listings, messages, and return codes” on page 73
• “Changes in compiler option functionality” on page 76
• “Changes that affect compiler invocations” on page 81
• “Changes that affect JCL procedures” on page 82
• “JCL that runs pre-z/OS V1R5 C/C++ programs” on page 84
• “Compiler options that manage Standard C++ compliance” on page 84
• “Impact of recompiling applications that include <net/if.h> with the _XOPEN_SOURCE_EXTENDED

feature test macro” on page 84
• “Impact of recompiling applications that include the pselect() interface” on page 84
• “Impact of recompiling with the _OPEN_SYS_SOCK_IPV6 macro ” on page 84
• “Impact of recompiling code that relies on math.h to include IEEE 754 interfaces” on page 85

Changes in compiler listings, messages, and return codes
From release to release, message contents can change and, for some messages, return codes can change.
Errors can become warnings, and warnings can become errors. You must update any application that is
affected by changes in message contents or return codes. Do not build dependencies on message
contents, message numbers, or return codes. See z/OS XL C/C++ Messages for a list of compiler
messages.

Listing formats, especially the pseudo-assembler parts, will continue to change from release to release.
Do not build dependencies on the structure or content of listings. For information about Using the z/OS XL
C compiler listing or Using the z/OS XL C++ compiler listing for the current release, refer to z/OS XL C/C++
User's Guide.

You might need to be aware of changes with respect to the following issues:

• “Appearance of compiler substitution variables” on page 73
• “Function offsets in source listing” on page 74
• “Diagnostic refinement in identification of linkage issues (C++ only)” on page 74
• “References to UNIX System Services file names” on page 75
• “Non-compliant array index raises an exception” on page 75
• “Unexpected name lookup error messages with template use” on page 75
• “Width of mnemonic in assembly listings” on page 76
• “Macro redefinitions and error messages” on page 76

For information about the language levels that are affected, see “LANGLVL(ANSI), LANGLVL(SAA), or
LANGLVL(SAAL2) compiler option and macro redefinitions” on page 78 and “LANGLVL(EXTENDED)
compiler option and macro redefinitions” on page 79.

Appearance of compiler substitution variables
As of z/OS V1R10, the compiler substitution variable appears, where applicable, in the message section of
a compilation listing. This is to avoid the confusion that can be caused by a string of blank spaces in the
listing.

© Copyright IBM Corp. 1996, 2019 73

Corrections in escape sequence encoding
As of z/OS V1R11, the encoding of octal escape characters in string literals and wide string literals is
corrected. See the corrected processing in the following table (where the bytecode is shown using base
16).

Table 15. Corrections in escape sequence encoding

Example
Old bytecode
(INCORRECT)

New bytecode
(CORRECT) Description

"\776" 01fe00 fe00 Octal escape overflow in
narrow string literals.

L"\776" 0001fe00 00 01fe0000 Octal escape above
\377 (no overflow) in
wide string literal.

Function offsets in source listing
As of z/OS V1R10, the XL C/C++ compiler adds the starting offset of each function to the listing when the
OFFSET option is specified.

Diagnostic refinement in identification of linkage issues (C++ only)
Prior to z/OS V1R9 XL C/C++ PTF UK31348, the XL C++ compiler diagnosed any case in which two
functions with the same linkage signature were mapped together. For examples, see Figure 11 on page
74 and Figure 12 on page 74.

As of z/OS V1R9 XL C/C++ PTF UK31348, the XL C++ compiler diagnoses two functions that are mapped
together only when both are defined in the same compilation unit, without considering differences in
linkage signature. See Figure 13 on page 75.

// t.C
extern "C" int foo(int);
extern "C" int bar(double);
#pragma map (foo, "bar")
int f() { return foo(2) + bar(3.0);}

Figure 11. Example of diagnosis of two externally defined functions with different types mapped together,
prior to z/OS V1R9 XL C/C++ PTF UK31348

The diagnostic message will identify the mapping of foo with "bar" as invalid because their declarations
differ in type.

// t.C
int foo(double);
extern "C" int bar(double);
#pragma map (foo, "bar")
int f() { return foo(2) + bar(3.0);}

Figure 12. Example of diagnosis of two externally defined functions with different linkage signatures
mapped together, prior to z/OS V1R9 XL C/C++ PTF UK31348

The diagnostic message will identify the mapping of foo with "bar" as invalid because, although they are
defined with the same type, one is defined with a default linkage.

74 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

// t.C
extern "C" int foo(int) { return 0; }
extern "C" int bar(int) { return 2.0; }
#pragma map (foo, "bar")
int f() { return foo(2) + bar(3.0);}

Figure 13. Example of diagnosis of two functions with the same linkage signatures mapped together as of
z/OS V1R9 XL C/C++ with PTF UK31348 applied

The diagnostic message will identify the mapping of foo with "bar" as invalid because both are defined,
which violates the one-definition rule.

References to UNIX System Services file names
As of z/OS V1R9, when compiling C source files that reside in the UNIX System Services file system, any
messages emitted during the compilation will use relative path information, rather than absolute path
information, to reference the file name. This makes all file-name references in the compiler error
messages and listings consistent in that they all use relative path information.

Non-compliant array index raises an exception
As of z/OS V1R9 XL C++, an error message is generated whenever an array index is defined as anything
other than an integral non-volatile constant expression. This change alerts you that your code does not
comply with the currently supported C++ Standard (section 5.19). For an example, see Figure 14 on page
75.

Notes:

1. To avoid this problem, redefine the array index to an integral non-volatile constant expression.
2. Prior to z/OS V1R9 XL C++, the compiler allowed local validation of this rule.

void f() {}
int main()
{
int i[(int)f];
return 0;
}

Figure 14. Example of volatile array index

The compiler will generate a message stating that the expression must be an integral non-volatile
constant expression.

Unexpected name lookup error messages with template use
As of z/OS V1R9 XL C++ compiler, new name lookup exceptions could result from compiling a template
which uses symbolic names that do not depend on that template's parameters. For an example, see
Figure 15 on page 76 and Figure 16 on page 76.

Symbolic names that are not dependent on a template parameter must be:

• Declared before they are used.
• Defined before they are used in a context that requires a complete definition.

Earlier releases allowed names to be used in a template definition before they were declared as long as
they were declared before the template was instantiated.

Note: This change will not affect well-formed code, which always defines names in the source code
before using them.

For information about using templates in C++ programs, see z/OS XL C/C++ Programming Guide. For
information about compiling, binding, and running C++ templates, see z/OS XL C/C++ User's Guide.

Chapter 14. Compile-time migration issues with earlier z/OS C/C++ programs 75

template <class T> void fnc(T &x, T y)
{
 int t1=FAIL;
 int t2=ZERO;
 int t3=ONE;
}

enum ENUMTYPE {ZERO = 3, ONE, FAIL} e1, e2, e3, e4;

struct tst{};

template void fnc(tst &x, tst y);

Figure 15. Example of C++ template code that will cause name lookup exceptions

If the compiler encounters this code before it encounters the declarations of the symbolic names FAIL,
ZERO, and ONE, it will generate the messages listed in Figure 16 on page 76.

"./ex1.cpp", line 3.11: CCN5274 (S) The name lookup for "FAIL" did not find a declaration.
"./ex1.cpp", line 8.31: CCN6303 (I) "ENUMTYPE FAIL" is not visible.
"./ex1.cpp", line 1.25: CCN5700 (I) The previous message was produced while
 processing "fnctst(tst &, tst)".
"./ex1.cpp", line 4.11: CCN5274 (S) The name lookup for "ZERO" did not find a declaration.
"./ex1.cpp", line 8.16: CCN6303 (I) "ENUMTYPE ZERO" is not visible.
"./ex1.cpp", line 5.11: CCN5274 (S) The name lookup for "ONE" did not find a declaration.
"./ex1.cpp", line 8.26: CCN6303 (I) "ENUMTYPE ONE" is not visible.

Figure 16. Messages that result from attempts to compile the code in Figure 15 on page 76

Width of mnemonic in assembly listings
As of z/OS V1R9 XL C/C++ compiler, customized JCL procedures or other tools that scan assembly listings
might need to be updated because the width of the instruction mnemonic has been increased.

Macro redefinitions and error messages
As of z/OS V1R7 XL C, the behavior of macro redefinition has changed. For certain language levels, the XL
C compiler will issue a severe error message instead of a warning message when a macro is redefined to a
value that is different from the first definition.

Changes in compiler option functionality
The following topics describe changes in compiler option functionality that might require modifications to
either your use of compiler options or your source code. For detailed information about these compiler
options, see z/OS XL C/C++ User's Guide.

Option behavior change when processing multiple suboptions
As of z/OS V2R1, when multiple suboptions are specified with the following options, the compiler no
longer issues a diagnostic message, and the last suboption is used:

• AGGRCOPY
• ASSERT
• CHECKOUT
• DLL
• PORT
• PPONLY

CHECKOUT compiler option
Starting from z/OS V1R13, the CHECKOUT option is deprecated. Use the INFO option instead of
CHECKOUT.

76 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

CMDOPTS compiler option and conflict resolution
As of z/OS V1R7 XL C/C++ compiler:

• Default options specified in the configuration file have the same weight as if they were specified on the
command line. The XL C/C++ compiler cannot distinguish between an option specified in the
configuration file and an option specified on the command line.

• Any conflict between options and pragmas is resolved in favor of the option.
• The XL C/C++ compiler no longer requires that default options be specified in the configuration file.

As of z/OS V1R7 XL C/C++, if you customize your xlc configuration file using the sample default
configuration file, you might experience a change in behavior because the defaults for supported xlc
commands are no longer specified in the options attribute in the configuration file. Instead, the xlc utility
emits the defaults as suboptions of the CMDOPTS compiler option. This may cause a change in behavior
because the XL C/C++ compiler resolves conflicts between options and pragmas differently, depending on
whether options are specified as suboptions of the CMDOPTS option or explicitly on the command line
and in the options attributes.

DFP compiler option and earlier floating-point applications
As of z/OS V1R10, there is a risk that earlier C/C++ applications compiled with the DFP option could
inadvertently reset the decimal floating-point rounding mode to the default value. You should consider
this risk if you are adding decimal floating-point functionality to an application that includes floating-point
operations which use the data type fenv_t or the function fesetenv() with the static initializer
FE_DFL_ENV. This is because the FE_DFL_ENV and __fe_def_env static initializers set the decimal
floating-point rounding mode to the FE_DEC_TONEAREST value.

Be aware of the following constraints

• Because the decimal floating-point rounding mode field is stored in the FPC register separately from the
binary floating-point rounding mode, there will be no effect on the binary floating-point rounding mode.
However, you should take care with exception handling routines because binary floating-point
applications can use FPC exception flags.

• DFP names will not be exposed when the application is compiled without the DFP compiler option.
(There may also be a new __STDC_WANT_DEC_FP__ C99 feature test macro to further protect against
namespace invasion).

• If you are compiling a System Programming C (SPC) application, you should not use the DFP option; the
statically bound version of the SPC function sprintf() does not support decimal floating-point
number formats. Standard functions that are already supported in the SPC library (such as printf()
and scanf()) will be able to operate on decimal floating-point numbers.

DSAUSER compiler option
Starting from z/OS V1R13 XL C++ compiler, the DSAUSER option is supported. When the METAL option is
in effect, the DSAUSER option requests a user field of the size of a pointer to be reserved on the stack. The
default is NODSAUSER. For more information, see DSAUSER | NODSAUSER (C only) that is documented
in z/OS XL C/C++ User's Guide.

ENUMSIZE(SMALL) and protected enumeration types in system header files
As of z/OS V1R7 XL C/C++ compiler, selected enumerated (enum) type declarations in system header files
are protected to avoid potential execution errors. This allows you to specify the ENUMSIZE compiler
option with a value other than SMALL without risking incorrect mapping of enum data types (for example,
if they were used inside of a structure).

With earlier versions of the compiler, if you specified ENUMSIZE() with a value other than SMALL, data
that was declared with certain enum types could be incorrectly mapped. In some instances, the header
files in the library referenced the types (such as __device_t in the typedef fldata_t), which resulted

Chapter 14. Compile-time migration issues with earlier z/OS C/C++ programs 77

in a potential inconsistency between the mapping seen during application execution and that declared in
the library (which is built with the default ENUMSIZE(SMALL)).

Even when you specify ENUMSIZE with a value other than SMALL, the enumerations listed in Table 16 on
page 78 will always be ENUMSIZE(SMALL).

Table 16. Header files with declarations of protected enumeration types

Header file Enumerations

stdio.h __device_t

search.h ACTION
VISIT

sys/uio.h uio_rw

sys/wait.h idtype_t

_Ccsid.h __csType

__ledebug.h asfAmodeType
asfCallbackResult

yvals.h _Mux

FLAG compiler option
As of z/OS V1R13, FLAG(I) is the default in z/OS UNIX System Services as it is in batch compilation.

FLOAT(AFP) suboptions for applications that access CICS data
See “CICS TS V4.1 with "Extended MVS Linkage Convention"” on page 117.

GENASM compiler option
Starting from z/OS V1R13, the GENASM option is not supported in UNIX System Services. Instead, you
can use the -S flag and the -o option.

GONUMBER compiler option and LP64 support
As of z/OS V1R8 XL C/C++ compiler, the GONUMBER compiler option generates line number tables for
both 31-bit and 64-bit applications.

IPA compiler option
Prior to z/OS V2R1 XL C/C++, the default optimization level for the IPA option was NOOPTIMIZE when the
compiler was invoked from JCL.

Starting with z/OS V2R1 XL C/C++, the default optimization level for the IPA option is OPTIMIZE(2) when
the compiler is invoked from JCL. This change was made to match the default optimization level when the
compiler is invoked from z/OS UNIX, as well as the default on the other platforms.

LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2) compiler option and
macro redefinitions

As of z/OS V1R7 XL C, the treatment of macro redefinitions has changed. For LANGLVL(ANSI),
LANGLVL(SAA), or LANGLVL(SAAL2), the XL C compiler will issue a severe message instead of a warning
message when a macro is redefined to a value that is different from the first definition.

78 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

#define COUNT 1
#define COUNT 2 /* error */

Figure 17. Macro redefinition

Note: Compare the treatment of macro redefinitions for these LANGLVL sub-options with that in
“LANGLVL(EXTENDED) compiler option and macro redefinitions” on page 79.

LANGLVL(EXTC1X) compiler option
This option controls that compilation is based on the C11 standard, invoking all the currently supported
C11 features and other implementation-specific language extensions. For detailed information, see
EXTC1X that is documented in z/OS XL C/C++ User's Guide.

Note: C11 is a new version of the C programming language standard. IBM continues to develop and
implement the features of the new standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the features of the C11 standard is
complete, including the support of a new C standard library, the implementation may change from release
to release. IBM makes no attempt to maintain compatibility, in source, binary, or listings and other
compiler interfaces, with earlier releases of IBM's implementation of the new features of the C11
standard and therefore they should not be relied on as a stable programming interface.

LANGLVL(EXTENDED) compiler option and macro redefinitions
As of z/OS V1R7 XL C, you can redefine a macro that has not been first undefined with
LANGLVL(EXTENDED).

#define COUNT 1
#define COUNT 2

int main () {
 return COUNT;
}

Figure 18. Macro redefinition under LANGLVL(EXTENDED)

With z/OS V1R6 C and previous C compilers, this test returns 1. As of z/OS V1R7 XL C, this test returns 2.
In both cases, the following warning message is issued:

CCN3236 Macro name macro_name has been redefined

where macro_name is COUNT in this example.

You can use the SUPPRESS(CCN3236) option to suppress this warning message. Alternatively, you can
use the SEVERITY(I(CCN3236)) option to decrease the severity of the message to informational.

Note: Compare the treatment of macro redefinitions for LANGLVL(EXTENDED) with that for
“LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2) compiler option and macro redefinitions” on page
78.

LANGLVL(EXTENDED0X) compiler option
This option controls that compilation is based on the C++11 standard, invoking all the currently supported
C++11 features and other implementation-specific language extensions. The option is implemented in XL
C/C++ compiler as of z/OS V1R11. For detailed information, see LANGLVL(EXTENDED0X) compiler
option that is documented in z/OS XL C/C++ User's Guide.

LOCALE compiler option
As of z/OS V1R9 XL C/C++, the __LOCALE__ macro is defined to the name of the compile-time locale. If
you specified LOCALE(strinf string literal), the compiler uses the runtime function setlocale(LC_ALL "string

Chapter 14. Compile-time migration issues with earlier z/OS C/C++ programs 79

literal") to determine the name of the compile-time locale. If you do not use the LOCALE compiler option,
the macro is undefined.

Prior to z/OS V1R9 XL C/C++, the __LOCALE__ macro was defined to "" when the LOCALE option was
specified without a suboption.

M compiler option
Before z/OS V1R11, the stand-alone makedepend utility was used to analyze source files and determine
source dependencies. As of z/OS V1R11, the M (-qmakedep) compiler option is introduced to provide
similar information.

The M compiler option is used to generate a make description file as a side-effect of the compilation
process. The description file contains a rule or rules suitable for make that describes the dependencies of
the main compilation source file.

The MF option is used in conjunction with the M option and specifies the name of the file where the
dependency information is generated, or the location of the file, or both. The MF option has no effect
unless make dependency information is generated.

The MG option is used in conjunction with the M option and instructs the compiler to include missing
header files into the make dependencies file.

The MT option is used in conjunction with the M option and sets the target to the <target_name>
instead of the default target name. This is useful in cases where the target is not in the same directory as
the source or when the same dependency rule applies to more than one target.

The MQ option is the same as the MT option except that the MQ option escapes any characters that have
special meaning in make.

For detailed information, refer to MAKEDEP compiler option in z/OS XL C/C++ User's Guide.

RESTRICT option
z/OS V1R12 XL C compiler introduces a new option RESTRICT to indicate to the compiler that all pointer
parameters in some or all functions are disjoint. The default is NORESTRICT. For detailed information, see
RESTRICT | NORESTRICT (C only) in z/OS XL C/C++ User's Guide.

SEVERITY option
z/OS V1R12 XL C compiler introduces a new option SEVERITY to support message severity modification.
With this option specified, you can set the severity level for a certain message that you specified. The
compiler will use the new severity when the specified message is generated by the compiler. The default
is NOSEVERITY. For detailed information, see SEVERITY | NOSEVERITY (C only) in z/OS XL C/C++ User's
Guide.

SQL compiler option and SQL EXEC statements
See Chapter 20, “Migration issues with earlier C/C++ applications that use DB2,” on page 119.

TARGET compiler option
As of z/OS V2R3 XL C/C++, the earliest release that can be targeted is z/OS V2R1. For more information
about the TARGET compiler option, refer to z/OS XL C/C++ User's Guide.

See also “Program modules from an earlier release” on page 87.

TEMPLATEDEPTH compiler option
Starting from z/OS V1R13 XL C++ compiler, the TEMPLATEDEPTH option is supported. With this option,
you can specify the maximum number of recursively instantiated template specializations that are

80 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

processed by the compiler. The default is TEMPLATEDEPTH(300). For more information, see
TEMPLATEDEPTH (C++ only) that is documented in z/OS XL C/C++ User's Guide.

Changes that affect compiler invocations
As of z/OS V1R6 C/C++ compiler, compiler invocation is supported by two different utilities:

• c89
• xlc

z/OS V1R6 C/C++ introduced the following utilities:

• xlc command, to compile a C program
• xlC and xlc++ commands, to compile a C++ program

z/OS V1R6 C/C++ introduced the following command suffixes:

• _x suffix, which compiles the program with XPLINK
• _64 suffix, which compiles the program under LP64

The utility you want to use depends on:

• Whether you need to port code between z/OS and AIX®.
• How you want to set up your build environment.

For example, you can use the command c89_x to compile an ANSI-compliant program with XPLINK.

Note: As of z/OS V1R7 XL C/C++, you no longer need to use command names with suffixes _x/_64 to
compile/bind an XPLINK or 64-bit application. You can use suffixless command names with -qxplink/-
q64 or -Wc,xplink/-Wc,lp64 and -Wl,xplink/-Wl,lp64 instead. For detailed information, refer to
the c89 — Compiler invocation using host environment variables in z/OS XL C/C++ User's Guide.

Table 17. Differences between the c89 and xlc compiler invocation utilities

c89 utility xlc utility

Command support The c89 utility does not support

• The -S flag option introduced in
z/OS V1R9.

• AIX options syntax.

The following commands accept
AIX C/C++ as well as z/OS C/C++
options syntax:

• cc
• c89
• cxx
• c++

The xlc utility does not support
the TEMPINC compiler option.

Environment setup Determined by environment
variables

Determined by configuration file

Changes that affect use of the c89 command

Debug format specification
As of z/OS V1R6 C/C++, the environment variable _DEBUG_FORMAT can be used with the c89 utility to
specify translation of the -g flag option for 31-bit compilations:

• If _DEBUG_FORMAT equals DWARF (the default), -g is translated to DEBUG(FORMAT(DWARF)).
• If _DEBUG_FORMAT equals ISD, then -g is translated to TEST (the old translation).

Chapter 14. Compile-time migration issues with earlier z/OS C/C++ programs 81

For the impact on the runtime environment, see “Debug format and c89 -g flag option translation” on
page 88.

For more information about using the c89 utility, see c89 — Compiler invocation using host environment
variables in z/OS XL C/C++ User's Guide.

Changes that affect use of the xlc utility
When you use the xlc utility to compile or link an existing application, be aware of the following potential
migration issues:

• Changes in processing of return code (see “Exposure of build problems and xlc utility” on page 82)
• Changes in processing of source file comments (see “When C++ style comments are the default” on

page 82)

Exposure of build problems and xlc utility
As of z/OS V1R10 XL C/C++ compiler, the xlc utility handles the *_ACCEPTABLE_RC environment variable
as the c89 utility handles it. This permits users to specify acceptable return codes in order to expose the
same build problems that are exposed with the c89 utility.

You will notice a change in behavior if:

• You use the xlc utility to compile source programs or link-edit object files in an environment in which the
*_ACCEPTABLE_RC environment variable is exported:

• The *_ACCEPTABLE_RC environment variable has a value other than "4".

Otherwise, the xlc utility behaves the same as it did for earlier releases (assuming you do not use the
acceptable_rc configuration file attribute).

For detailed information about the *_ACCEPTABLE_RC environment variable, see z/OS UNIX System
Services Command Reference. For more information about specifying acceptable return codes, see z/OS
XL C/C++ User's Guide.

When C++ style comments are the default
As of z/OS V1R7 XL C/C++, the xlc command causes the compiler to generate C++ style comments by
default. This change will not normally affect your program. But in the special cases where it does (as
shown in the example below), you must either override –qcpluscmt or change your source code.

In Figure 19 on page 82, the intention is to increment the input by one.

printf("%d\n",i//*something*/
+1);

Figure 19. C++ style comment

Prior to z/OS V1R7 XL C/C++ compiler, the compiler saw the equivalent of: printf("%d\n", i / +1);
and if the input is 4, the output is also 4.

As of z/OS V1R7 XL C/C++ compiler, the compiler sees the equivalent of: printf("%d\n", i +1); and
if the input is 4, the output is 5, as intended.

Changes that affect JCL procedures
Memory requirements for compilation may increase for successive releases as new logic is added. If you
cannot recompile an application that you successfully compiled with a previous release of the compiler,
try increasing the region size. For the current default region size, refer to the z/OS XL C/C++ User's Guide.

82 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

User-defined conversion tables and iconv() functions
As of z/OS V1R9, the iconv() family of functions utilizes character conversion services provided by
Unicode Services (UCS). Prior to z/OS V1R9 releases, the iconv() function used either a single byte or a
double byte substitution character; single-byte and double-byte substitution characters were never
mixed. As of z/OS V1R9, the iconv() function will use a single byte substitution character when
converting single byte characters and a multibyte substitution character when converting multibyte
characters in a mixed character set conversion. The environment variables, _ICONV_MODE and
_ICONV_TECHNIQUE control function behavior.

These changes will affect your compilation only if both of the following conditions are true:

• Your JCL does specifies user-defined conversion tables.
• Your JCL uses conversion techniques other than LMREC (the default value for _ICONV_TECHNIQUE).

Otherwise, set the _ICONV_MODE environment variable to C in order to access the new UCS character
conversion services.

Note: When Unicode Services are being used, the _ICONV_UCS2 and _ICONV_PREFIX environment
variables have no meaning.

The iconv() function returns the number of nonidentical conversions performed during a conversion. As
of z/OS V1R9, the iconv() function interprets nonidentical conversion more strictly. This means that the
nonidentical conversion count for the same input buffer contents might be higher than it was for
compilations under previous releases.

If your program includes CICS statements, also see “Customized CEECCSD.COPY and CEECCSDX.COPY
files and iconv() changes” on page 117.

Note: As of z/OS V1R11, IBM will no longer ship uconvTable binary tables in either the installation-
prefix.SCEEUTBL data set or the z/OS UNIX file system directory /usr/lib/nls/locale/
uconvTable.

ILP32 compiler option and name mangling
As of z/OS V1R9, the default name mangling suboption under ILP32 is zOSV1R2, whether the ILP32
option is specified during the compiler invocation or used by default. Any JCL procedure that is run under
the ILP32 compiler option (either explicitly or by default), and does not specify the suboption that
controls the name mangling conventions, will instruct the compiler to mangle names differently that it did
in earlier supported releases.

This change applies to batch processing only. For programs that are compiled under UNIX System
Services, there is no change in behavior.

Note: In earlier supported releases, when ILP32 was either explicitly specified in the JCL or used by
default, the default name mangling suboption was ANSI instead of zOSV1R2.

IPA(LINK) compiler option and very large applications
As of z/OS V1R12 XL C/C++, when using the IPA compiler option to compile very large applications, you
might need to increase the size of the work file associated with SYSUTIP DD in the IPA Link step. If you
are linking the application in a z/OS UNIX environment, you can control the size of this work file with the
_CCN_IPA_WORK_SPACE environment variable. If particularly large source files are compiled with IPA,
the default size of the compile-time work files might also need to be increased. These can be modified via
the prefix_WORK_SPACE environment variables.

IPA(LINK) compiler option and exploitation of 64-bit virtual memory
As of z/OS V1R12 XL C/C++, the compiler component that executes IPA at both compile and link time is a
64-bit application, which will cause an XL C/C++ compiler ABEND if there is insufficient storage. The
default MEMLIMIT system parameter size in the SMFPRMxparmlib member should be at least 3000 MB

Chapter 14. Compile-time migration issues with earlier z/OS C/C++ programs 83

for the link, and 512 MB for the compile. The default MEMLIMIT value takes effect whenever the job does
not specify one of the following:

• MEMLIMIT in the JCL JOB or EXEC statement
• REGION=0 in the JCL

Note:

• The compiler component that executes IPA(LINK) has been a 64-bit application since z/OS V1R8 XL C/C
++ compiler.

• The MEMLIMIT value specified in an IEFUSI exit routine overrides all other MEMLIMIT settings.

The UNIX System Services ulimit command that is provided with z/OS can be used to set the MEMLIMIT
default. For information, see z/OS UNIX System Services Command Reference. For additional information
about the MEMLIMIT system parameter, see z/OS MVS Programming: Extended Addressability Guide.

As of z/OS V1R8 XL C++ compiler, the EDCI, EDCXI, EDCQI, CBCI, CBCXI, and CBCQI cataloged
procedures, which are used for IPA Link, contain the variable IMEMLIM, which can be used to override the
default MEMLIMIT value.

JCL that runs pre-z/OS V1R5 C/C++ programs
As of z/OS V1R5 XL C/C++ compiler, the CBCI and CBCXI procedures contain the variable CLBPRFX. If you
have any JCL that uses these procedures, you must either customize these procedures (for example, at
installation time) or modify your JCL to provide a value for CLBPRFX.

Compiler options that manage Standard C++ compliance
To make an application conform to the currently supported Standard C++, you might need to change
existing source code. You can use the compiler options and suboptions to manage those phases. For
details, refer to Language element control options in z/OS XL C/C++ User's Guide.

Impact of recompiling applications that include <net/if.h> with the
_XOPEN_SOURCE_EXTENDED feature test macro

As of z/OS V1R9, BSD-like socket definitions will not be automatically exposed when XPG 4.2 namespace
is requested. To avoid violation of the standard UNIX namespace, the definitions are protected with the
_OPEN_SYS_IF_EXT feature test macro.

Note: BSD sockets are used to manipulate network interfaces that are defined in <net/if.h>. For
additional information about header files, see z/OS XL C/C++ Runtime Library Reference.

Impact of recompiling applications that include the pselect()
interface

As of z/OS V1R11, recompilation of an existing XL C/C++ application that includes the <sys/select.h>
header might fail if the application calls the pselect() interface and the undefined _POSIX_C_SOURCE
200112L feature test macro (or equivalent). If you need to recompile applications that call pselect(), you
must define the _POSIX_C_SOURCE feature test macro (or equivalent) prior to including the system
headers. Prior to z/OS V1R11, the pselect() declaration in <sys/select.h> was not protected by a feature
test macro.

Impact of recompiling with the _OPEN_SYS_SOCK_IPV6 macro
As of z/OS V1R7, recompiling an earlier C/C++ program that uses the _OPEN_SYS_SOCK_IPV6 feature
test macro will expose new definitions in Language Environment header files. See “New definitions
exposed by use of the _OPEN_SYS_SOCK_IPV6 macro” on page 69.

84 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Impact of recompiling code that relies on math.h to include IEEE
754 interfaces

As of z/OS V1R9 XL C/C++ compiler, recompilation of earlier C/C++ applications will fail if the code relies
upon math.h to include _Ieee754.h. See “Potential need to include _Ieee754.h” on page 69.

Chapter 14. Compile-time migration issues with earlier z/OS C/C++ programs 85

86 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 15. Bind-time migration issues with earlier
z/OS C/C++ programs

If you are relinking load modules or program objects from a previous release of z/OS C/C++ compiler, be
aware of the following potential migration issues:

• “Unexpected "missing symbol" error (C++ only)” on page 87
• “Program modules from an earlier release” on page 87
• “Alignment incompatibilities between object models” on page 88
• “Alignment incompatibilities between XL C and XL C++ output with #pragma pack(2)” on page 88
• “Debug format and c89 -g flag option translation” on page 88
• “argc argv parsing support for Metal C programs” on page 88

Unexpected "missing symbol" error (C++ only)
If the binder is generating "missing symbol" error messages that did not appear with earlier compilers, it
might be due to the change in the treatment of the using directive that was introduced in the z/OS
V1R10 XL C++ compiler. See “Unqualified name lookups and the using directive” on page 103.

Program modules from an earlier release
When you use z/OS V2R4 XL C/C++ compiler to bind earlier program modules, be aware of the following
migration issues:

• “Namespace pollution binder errors” on page 87
• “c89 COMPAT binder option default and programs from an earlier release” on page 88

Namespace pollution binder errors
As of z/OS V1R8 XL C/C++ compiler, when you target OS/390 V2R10 or an earlier release while binding or
linking your application, you might encounter the namespace pollution error shown in Figure 20 on page
87.

Note: z/OS V1R1 C/C++ compiler is the same as OS/390 V2R10 C/C++ compiler. OS/390 V2R10 is also
reshipped in z/OS V1R2 through to V1R6.

IEW2456E 9207 SYMBOL terminate__3stdFv UNRESOLVED. MEMBER COULD NOT BE INCLUDED
 FROM THE DESIGNATED CALL LIBRARY.
FSUM3065 The LINKEDIT step ended with return code 8.

Figure 20. IEW2456E namespace pollution error

If you encounter the error shown in Figure 20 on page 87, use the code shown in Figure 21 on page 87
inside a header file that is included by the affected source.

#ifdef __cplusplus
#if ((__COMPILER_VER__ >= 0x41080000) && (__TARGET_LIB__ == 0x220A0000))
namespace std { void terminate(); }
#pragma map(std::terminate, "terminate__Fv")
#endif
#endif

Note: To prevent targeting an inappropriate release, guard the #pragma map statement with the
__TARGET_LIB__ macro.

Figure 21. Header file code that handles IEW2456E error condition

© Copyright IBM Corp. 1996, 2019 87

c89 COMPAT binder option default and programs from an earlier release
As of z/OS V1R8 XL C/C++, the c89 utility no longer emits the default for the COMPAT binder option. This
change prevents inadvertent attempts to use features that are not supported by the targeted release. It
means that you have the option to obtain the binder defaults for the COMPAT option but you are not
forced to override the c89 default when you bind applications intended to run on earlier releases. If you
want to maintain the previous c89 utility behavior, you must do one of the following:

• Set the _PVERSION environment variable to a release earlier than z/OS V1R8 XL C/C++.
• Specify the COMPAT option on the command line. For example: -Wl,compat=curr.

If you want to override the binder default for the COMPAT option using the C/C++ cataloged procedures,
specify the desired COMPAT option in the BPARM proc variable.

Note: When the TARGET compiler option is used, binder features that are not supported by the targeted
release should not be used. In previous releases of the z/OS C/C++ compiler, the default COMPAT option
had to be overridden.

Alignment incompatibilities between object models
As of z/OS V1R6, C/C++ compilers support the IBM object model as well as the compat object model. The
IBM object model has a more complex layout than the compat object model. The more complex layout
supports 64-bit processing as well as 31-bit processing.

The IBM object model is the default for for 64-bit processing, which is specified by the LP64 compiler
option. The compat object model is the default for 31-bit processing, which is specified by the ILP32
compiler option. Because each object model uses a different memory layout, C++ constructs that work
under the compat object model might not work under the IBM object model.

For more information, refer to the z/OS 64-bit environment in z/OS XL C/C++ Programming Guide.

Alignment incompatibilities between XL C and XL C++ output with #pragma
pack(2)

An aggregate, which contains char data type members only, has a natural alignment of one byte.
Typically, XL C retains the natural one-byte alignment. However, when #pragma pack(2) is applied to
an aggregate, its alignment increases to two bytes. If you are binding both XL C and XL C++ program
modules, and both C and C++ program modules use #pragma pack(2), there might be alignment
incompatibilities.

See “Unexpected C++ output with #pragma pack(2)” on page 71.

Debug format and c89 -g flag option translation
As of z/OS V1R6 C/C++, the environment variable _DEBUG_FORMAT can be used with the c89 utility to
specify translation of the -g flag option for 31-bit compilations:

• If _DEBUG_FORMAT equals DWARF (the default), -g is translated to DEBUG(FORMAT(DWARF)).
• If _DEBUG_FORMAT equals ISD, then -g is translated to TEST (the old translation).

For the impact on specification of compiler options, see “Debug format specification” on page 81.

For detailed information about using the c89 utility, see c89 — Compiler invocation using host
environment variables in z/OS XL C/C++ User's Guide.

argc argv parsing support for Metal C programs
As of z/OS V1R13, the argc argv parsing capability is added to Metal C programs. If your Metal C
programs work with standard argc and argv arguments, the newly enabled parsing code generated by
the compiler might cause problems.

88 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

If you use argc and argv in your main() function, you need to add CBC.SCCNOBJ dataset to the binder
SYSLIB for the resolution of CCNZINIT and CCNZTERM routines (CCNZQINI and CCNZQTRM for LP64).
The CCNZINIT and CCNZTERM routines need NAB established for their stack space. If you supply your
own prolog and epilog for main(), you need to allocate 1K of extra space (2K for LP64) in addition to the
DSA size suggested by the compiler in the global SET symbol &CCN_DSASZ.

For more information, see ARGPARSE | NOARGPARSE in z/OS XL C/C++ User's Guide.

Chapter 15. Bind-time migration issues with earlier z/OS C/C++ programs 89

90 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 16. Runtime migration issues with earlier
z/OS C/C++ applications

Runtime migration issues with earlier z/OS C/C++ programs result from changes in the Language
Environment services, or in changes in functionality of runtime options.

Be aware of the following potential migration issues:

• “Earlier AMODE 64 applications” on page 91
• “Retention of previous runtime behavior” on page 92
• “Failure of authentication process” on page 91
• “Internationalization issues” on page 94
• “Changes in math library functions” on page 95
• “Changes in floating-point support” on page 96
• “Changes in allocation of VSAM control blocks” on page 97
• “Changes to st_mode attribute of AF_UNIX socket files” on page 97
• “Changes to strfmon() output” on page 97
• “Changes to structure t_opthdr in xti.h” on page 98
• “Removal of conversion table source code” on page 98

Earlier AMODE 64 applications
When you run earlier applications under AMODE 64, be aware of the following potential issues:

• “HEAPPOOLS runtime option no longer ignored in all AMODE 64 applications” on page 91

HEAPPOOLS runtime option no longer ignored in all AMODE 64 applications
As of z/OS V1R10, Language Environment services will not ignore the HEAPPOOLS runtime option when
AMODE 64 applications specify it by using the _CEE_RUNOPTS environment variable.

In earlier Language Environment releases, when the HEAPPOOLS runtime option was specified via the
_CEE_RUNOPTS environment variable, it was handled as follows:

• When an AMODE 64 application spawned an AMODE 31 process, the AMODE 64 application would
ignore the HEAPPOOLS runtime option, but the AMODE 31 process would accept and propagate it.

• When an AMODE 31 application spawned an AMODE 64 process, the AMODE 31 application would
accept the HEAPPOOLS runtime option, but the AMODE 64 process would ignore it.

Customized runtime libraries
Language Environment improvements might necessitate changing the way you build your libraries.

For a list of Language Environment references, refer to “Bibliography” on page 133.

Failure of authentication process
If a pre-z/OS V1R10 XL C/C++ application fails to authenticate any password strings, it might be because
the maximum length of Pass_MAX has increased from 8 bytes to 255 bytes.

You should confirm that there is no change in password authentication behaviour by existing applications
that use the getpass() function.

© Copyright IBM Corp. 1996, 2019 91

Retention of previous runtime behavior
When your program is using Language Environment services, you can use the ENVAR runtime option to
specify the values of environment variables at execution time. You can use some environment variables to
specify the original runtime behavior for particular items. The following setting specifies the original
runtime behavior for the greatest number of items:

ENVAR("_EDC_COMPAT=32767")

Alternatively, you can add a call to the setenv() function, either in the CEEBINT High-Level Language
exit routine or in your main() program. If you use CEEBINT only, you will need to relink your application.
If you add a call to setenv() in the main() function, you must recompile the program and then relink
your application. For more information, refer to setenv() in z/OS XL C/C++ Runtime Library Reference and
to Using environment variables in z/OS XL C/C++ Programming Guide.

Unexpected output from fprintf() or fscanf()
As of z/OS V1R8, XL C/C++ supports decimal floating point size modifiers ("D", "DD", and "H") for the
fprintf and fscanf families of functions. If a percent sign (%) is followed by one of these character
strings, which had no meaning under previous releases of z/OS XL C/C++, the compiler could interpret the
data as a size modifier. Treatment of this condition is undefined and the behavior could be unexpected.

For example, Table 18 on page 92 shows the output, under different conditions, for the following
statement:

printf(“This results in a 10% Deduction.\n”);

Table 18. Potential results of printf(“This results in a 10% Deduction.\n”);

Compiler release Hardware Result

z/OS V1R9 XL C/C++ Without the DFP
facility. EDC6259S This function is not supported

 running on hardware that does not have the
 Decimal Floating Point Facility installed.

z/OS V1R9 XL C/C++ With the DFP
facility.

The following is written to stdout:

This results in a 10 2.000000e-390duction.

Earlier z/OS C/C++ Any hardware. The following is written to stdout:

This results in a 10Deduction.

See “Required changes to fprintf and fscanf strings %D, %DD, and %H” on page 69.

As of z/OS V2R1 (with APAR PI20843), XL C/C++ runtime supports new specifiers for the fprintf and
fscanf families of functions for vector data types. The newly introduced specifiers include separator flags
"," (comma), ";" (semicolon), ":" (colon), and "_" (underscore) and optional prefixes "v", "vh", "hv", "vl", "lv",
"vll", "llv", "vL", and "Lv". If a percent sign (%) is followed by one of these character strings, which had no
meaning under previous releases, the runtime could interpret the data as a vector type specifier.
Treatment of this condition is undefined and the behavior could be unexpected.

For example, Table 19 on page 93 shows the output, under different conditions, for the following
statement:

printf("About 10%visitors are covered%:Need more efforts.\n");

92 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Table 19. Potential results of printf(“About 10%visitors are covered%:Need more efforts.\n”);

Compiler release Hardware Result

z/OS V2R1 XL C/C++
(with APAR PI20843)

Any hardware. The following is written to stdout:

About 100 0 0 0 16 0 0 0 34 29 114 72 0 0 0 0sitors are
coveredNeed more efforts.

z/OS V2R1 XL C/C++
(without APAR
PI20843)

Any hardware. The following is written to stdout:

About 10visitors are covered:Need more efforts.

Earlier z/OS C/C++ Any hardware. The following is written to stdout:

About 10visitors are covered:Need more efforts.

See “Required changes to fprintf and fscanf strings due to new specifiers for vector types” on page 70.

IEEE754 math functions
As of z/OS V1R9, certain IEEE754 fdlibm math functions are replaced by code written by IBM Research.
Some of those were enhanced to improve performance and accuracy. The earlier versions are still
available. See “Changes in math library functions” on page 95.

Internal timing algorithm specification
As of z/OS V1R8 XL C/C++ compiler, the internal timing algorithm uses the _EDC_PTHREAD_YIELD
environment variable setting to control the time at which the processor is released.

If you want to continue to use the previous internal timing algorithm, use the following command:

_EDC_PTHREAD_YIELD=-1

For information about _EDC_PTHREAD_YIELD and setting environment variables, see Using environment
variables in z/OS XL C/C++ Programming Guide.

For information about the pthread_yield() and sched_yield() functions, see z/OS XL C/C++
Runtime Library Reference.

Daylight saving time definition
If you are using a locale that has been customized wth LC_TOD, you need to be aware that as of z/OS
V1R9, the Language Environment default daylight saving time (that for the U.S. Eastern time zone) is
changed.

To retain the earlier daylight saving time, use either of the following methods:

• If the TZ environment variable is defined, reset it to override the default time zone, which is the U.S.
Eastern time zone. TZ is typically set (with the value that is defined in either the /etc/environment
or /etc/profile files) when the system is started.

• Replace the values in the time_t structure with those saved from your earlier time.h header file.

Note: The time.h header file contains declarations of all timezone-related subroutines and externals,
as well as the tm structure.

Changes to the putenv() function and POSIX compliance
As of z/OS V1R5 C/C++, the function putenv() places the string passed to putenv() directly into the
array of environment variables. This behavior assures compliance with the POSIX standard.

Chapter 16. Runtime migration issues with earlier z/OS C/C++ applications 93

Prior to z/OS V1R5 C/C++, the string used to define the environment variable passed into putenv() was
not added to the array of environment variables. Instead, the system copied the string into system-
allocated storage.

To allow the POSIX-compliant behavior of putenv(), do nothing; it’s now the default condition.

To restore the previous behavior of putenv(), follow these steps:

1. Ensure that the environment variable, _EDC_PUTENV_COPY, is available on your pre-z/OS V1R5
system.

2. Set the environment variable _EDC_PUTENV_COPY to "YES".

For additional information, see:

• z/OS XL C/C++ Runtime Library Reference
• _EDC_PUTENV_COPY in z/OS XL C/C++ Programming Guide

Internationalization issues
If you are running an application that was last compiled under z/OS V1R2, z/OS V1R3, or z/OS V1R4, or
z/OS V1R5, be aware of the following internationalization issues:

• “Default daylight saving time change” on page 94
• “EEC default currency update” on page 94
• “Movement of LOCALDEF utilities to new data sets” on page 94

Default daylight saving time change
As of z/OS V1R9, the Language Environment default daylight saving time is changed. Functions that
depend on the change to or from daylight saving time will be executed in accordance with the new
default. For example, a function such as localtime() will use the new default daylight saving time to
return the local time.

If you are using a locale that has been customized with the LC_TOD IBM extension, you can retain the
previous daylight saving time. See “Daylight saving time definition” on page 93.

Note: The LC_TOD IBM extension specifies the rules used to define the beginning, end, and duration of
daylight savings time, and the difference between local time and Greenwich Mean Time.

EEC default currency update
Prior to z/OS V1R6, the default currency for EEC was set to local currency in the LC_MONETARY category
of the locale. If you wanted to set Euro as currency, the @euro locales would need to be set using
setlocale().

As of z/OS V1R6, the LC_MONETARY information in the base locale is now preset to use the Euro, which
means that the Euro is the default currency. If you want your applications to continue using the old (local)
currency, you will need to issue setlocale() with the new @preeuro locale as the parameter.

Behavior of the current @euro locales has not changed.

For z/OS V1R7 to z/OS V1R9, Venezuela is changing its currency from bolivar to bolivar fuerte. The
national currency symbol changes from Bs to BSF, and the international currency symbol changes from
VEB to VEF. If you want to keep using the old currency symbols, the Bs or VEB (bolivar), you must use
setlocale() with a locale name of "Es_VEO" for the language-territory part, instead of "Es_VE".

As of z/OS V1R9, Malta is adopting the euro currency. If you want to keep using the old currency symbol,
you must use the @preeuro locales.

Movement of LOCALDEF utilities to new data sets
As of z/OS V1R6, the following LOCALDEF utilities have been moved to new data sets.

94 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Utility From C/C++ data set
To Language Environment data
set

LOCALDEF CBC.SCCNUTL CEE.SCEECLST

EDCLDEF CBC.SCCNPRC CEE.SCEEPROC

EDCXLDEF CEE.SCCNPRC CEE.SCEEPROC

CCNELDEF CBC.SCCNCMP CEE.SCEERUN2

CCNLMSGS CBC.SCCNCMP CEE.SCEERUN2

If you use the MVS batch or TSO localedef (LOCALDEF) utility interfaces, you might need to do the
following:

• Add or replace the Language Environment procedures library (CEE.SCEEPROC) where you currently
have the C/C++ procedures library (CBC.SCCNPRC).

• Add or replace the Language Environment clist/exec library (CEE.SCEECLST) where you currently have
the C/C++ clist/exec library (CBC.SCCNUTL). In addition, you may need to customize the Language
Environment customization member (CEE.SCEECLST(CEE.CEL4CUST)) in addition to customizing the
C/C++ customization member (CBC.SCCNUTL(CBC.CCNCCUST)).

• Add the Language Environment library CEE.SCEERUN2 (in addition to CEE.SCEERUN) where you
currently have the C/C++ library CBC.SCCNCMP.

Changes in math library functions
As of z/OS V1R9, certain IEEE754 fdlibm math functions are replaced by code written by IBM Research.

The earlier versions of functions that are more closely aligned with the C99 standard are no longer
available. Neither the _IEEEV1_COMPATIBILITY feature test macro nor the
_EDC_IEEEV1_COMPATIBILITY environment variable can be used to affect these functions.

The earlier versions of functions with performance and accuracy enhancements are still available. See
Table 20 on page 96.

To use earlier versions of the IEEE754 fdlibm math functions, use either of the following methods:

• When using the FLOAT(IEEE) compiler option, use the _IEEEV1_COMPATIBILITY feature test macro.
• When variable mode is in effect, use environment variable _EDC_IEEEV1_COMPATIBILITY_ENV=ON.

Note: Variable mode is in effect under either of the following conditions:

– The _FP_MODE_VARIABLE feature test macro is used.
– The math.h header file is not included.

To modify your source code to use the new performance and accuracy enhancements, use the
information in Table 20 on page 96.

Chapter 16. Runtime migration issues with earlier z/OS C/C++ applications 95

Table 20. IEEE754 fdlibm math functions replaced in z/OS V1R9 XL C/C++

Math functions that are enhanced for
performance and accuracy

Math functions that are replaced but still
available

acos()
acosh()
asin()
asinh()
atan()
atanh()
atan2()
cbrt()
cos()
cosh()
erf()
erfc()
exp()
expm1()
gamma()
hypot()
lgamma()
log()
log1p()
log10()
pow()
rint()
sin()
sinh()
tan()
tanh()

acosl()
asinl()
atanl()
atan2l()
coshl()
cosl()
frexpl()
ldexpl()
log10l()
modfl()
powl()
sinhl()
tanl()
tanhl()

Changes in floating-point support
Changes in hexadecimal floating-point support could produce unexpected results.

Hexadecimal floating-point notation
Changes in support of hexadecimal floating point notation in the numeric conversion functions introduced
in Programming languages - C (ISO/IEC 9899:1999) can alter the behavior of well-formed applications
that comply with the Programming languages - C (ISO/IEC 9899:1990) standard and earlier versions of
the base documents. One such example would be:

96 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

int what_kind_of_number (char *s){
 char *endp; *EXP = "p+0"
 double d;
 long l;

 d = strtod(s,&endp);
 if (s != endp && *endp == `\0')
 printf("It is a float with value %g\n", d); 1
 else{
 l = strtol(s,&endp,0);
 if (s != endp && (strcmp(endp,EXP)== 0))
 printf("It is an integer with value %ld\n", l); 2
 else
 return 1;
 }
 return 0;
}

Notes:

1. If the function is called with: what_kind_of_number ("0xAp+0") and the runtime library is C99-
compliant, the output is: It is a float with value 10.

2. If the function is called with: what_kind_of_number ("0xAp+0") and the runtime library is not
C99-compliant, the output is: It is an integer with value 10 and an exception is raised.

Figure 22. Example of how C99 changes in hexadecimal floating-point notation affect well-formed code

Floating-point special values
The numeric conversion functions accept the following special values at all times:

• ±inf or ±INF
• ±nanq or ±nanq(n-char-sequence), and ±NANQ or ±NANQ(n-char-sequence)
• ±nans or ±nans(n-char-sequence), and ±NANS or ±NANS(n-char-sequence)
• ±nan or ±nan(n-char-sequence), and ±NAN or ±NAN(n-char-sequence)

Note: Neither the z/OS XL C/C++ compiler nor the Language Environment C/C++ runtime library includes
_Imaginary or formal support of the IEC 60559 floating point as described in Annex F and Annex G of
the C99 standard.

Changes in allocation of VSAM control blocks
As of z/OS V1R10, the XL C/C++ compiler instructs VSAM, by default, to allocate control blocks and I/O
buffers above the 16-MB line.

If you determine that this change could be causing a problem, you can use the VSAM JCL parameter AMP
to override the default.

Changes to st_mode attribute of AF_UNIX socket files
As of z/OS V2R1, the retrieved file type of AF_UNIX socket files that are returned in st_mode is S_IFSOCK,
rather than S_IFCHR. Functions stat(), lstat(), stat_o(), lstat_o(), and __readdir2() are
affected.

You must examine programs that use the affected functions and check the type of AF_UNIX socket files to
ensure compatibility with the updated function behavior.

Changes to strfmon() output
As of z/OS V2R1, the alignment of formatted output from strfmon() is changed. When #n and (are
specified in the input of strfmon(), the formatted output of positive and negative values are aligned in
the same columns, as required by the UNIX Standard. This causes the output of a positive value to be
wider than in previous releases.

Chapter 16. Runtime migration issues with earlier z/OS C/C++ applications 97

For example, the input format of strfmon() is %(#5n, which specifies that 5 digits are expected to be
formatted to the left of the radix character and that negative amounts are enclosed with parentheses.
Given a positive value 1234.56 and a negative value -1234.56, the output of strfmon() is as follows:

[123456]
[(123456)]

Changes to structure t_opthdr in xti.h
As of z/OS V2R1, the member type of structure t_opthdr is changed from unsigned int to unsigned
long, when not compiling with AMODE 64.

Programs that are compiled before this change can still run correctly without being re-compiled. Warning
messages about conversion between unsigned int and unsigned long might be reported at compile
time if a program does not comply with the new version of structure t_opthdr.

Changes to getting group or user database entry
As of z/OS V2R1, the case of not found database entry is not treated as an error case. As required by the
UNIX standard, when the group or user database entry that is associated with the specified name or ID is
not found, the calling function will not set errno. The impacted functions are getgrnam(), getpwnam(),
and getgrgid().

To ensure compatibility with the updated behavior, examine your programs that get database entry by
calling changed functions.

Removal of conversion table source code
As of z/OS V1R12, the C/C++ runtime library will no longer ship any ucmap source code or genxlt source
code for character conversions now being performed by Unicode Services.

Users with customized conversion tables should now generate custom Unicode Services conversion
tables.

Users of the iconv() family of functions testing to a "known conversion result" who experience testcase
failures need to update their expected results to the new conversion results.

Users wanting to create custom conversion tables involving any of the CCSIDs related to the conversion
table source no longer being shipped should now generate custom Unicode Services conversion tables
instead of custom Language Environment conversion tables.

The <INSTALLATION PREFIX>.SCEEUMAP data set will no longer be shipped.

The /usr/lib/nls/locale/ucmap HFS directory will no longer be shipped.

Note: The _ICONV_TECHNIQUE environment variable must be set to the same technique search order
value used for the customized Unicode Services table in order for the iconv() family of functions to use the
customized Unicode Services table. For example, if you want the iconv() family of functions to use a user-
defined Unicode Services table with a technique search order of 2, the _ICONV_TECHNIQUE environment
variable should be set to 2LMREC.

For information about how to generate and use custom Unicode Services conversion tables, see Support
for Unicode: Using Unicode Services, SA22-7649.

98 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Part 5. ISO Standard C++ compliance migration
issues

Programming languages - C++ (ISO/IEC 14882:2003(E)) documents the currently supported Standard C+
+.

As of z/OS V1R2 C++, the z/OS C++ compiler was compliant with Programming languages - C++ (ISO/IEC
14882:1998(E)).

As of z/OS V1R7 XL C/C++:

• z/OS C++ was compliant with Programming languages - C++ (ISO/IEC 14882:2003(E)).
• OS/390 V2R10 compiler was no longer shipped with the z/OS product. This means that programs

compiled with the z/OS C++ compiler must be compliant with Programming languages - C++ (ISO/IEC
14882:2003(E)) or Programming languages - C++ (ISO/IEC 14882:1998(E)).

Note: You can determine the ISO Standard level that is supported by the compiler by checking the
standard macro __cplusplus and its value, which remains unchanged from z/OS V1R6 C++. This macro
has the value 199711. If you are compiling a C ++ translation unit, the name __cplusplus is defined to
the value 199711L .

The following topics discuss the implications of migrating applications that were created with C++
compilers that are not compliant with Programming languages - C++ (ISO/IEC 14882:2003(E))

• Chapter 17, “Language level and your Standard C++ compliance objectives,” on page 101
• Chapter 18, “Changes that affect Standard C++ compliance of language features,” on page 103

© Copyright IBM Corp. 1996, 2019 99

100 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 17. Language level and your Standard C++
compliance objectives

Code that compiles without errors in pre-z/OS C++ V1R2 compilers might produce warnings or error
messages in the z/OS V2R4 XL C++ compiler. This could be due either to changes in the language or to
differences in the compiler behavior. Language elements that may affect your code are shown in Chapter
18, “Changes that affect Standard C++ compliance of language features,” on page 103.

Table 21 on page 101 shows the Standard C++ migration objectives and the recommended approach for
each.

Note: Full conformance can be achieved gradually by migrating to selected individual language features in
phases.

Table 21. Standard C++ migration objectives and approaches

Is code compliant with 1998
ISO Standard C++?

Compliance objective Action

Yes (ported or new). Migrate to the 2003 Standard
C++.

No action required.

Remain compliant with 1998
Standard C++.

Use one of the following compiler options and
suboptions:

• LANGLVL(ANSI)
• LANGLVL(STRICT98)

Notes:

1. LANGLVL(ANSI) and LANGLVL(STRICT98)
are synonymous.

2. You can use compiler options to control
individual language features. See the
"Compatability options for z/OS XL C/C++
compiler" table in the LANGLVL
description, z/OS XL C/C++ User's Guide.

No Use Standard C++ language
features, even if code must be
modified.

Use the following compiler options and
suboptions to aid the migration process:

• LANGLVL(COMPAT92) if your code compiles
with a previous compiler and you want to
move to z/OS V2R4 XL C/C++ with minimal
changes.

Note: This group is the closest you can get
to the behavior of the previous compilers.

• For information about compiler suboptions
that you can use to control individual
language features, refer to "Compatability
options for z/OS(R) XL C/C++ compiler" in
the LANGLVL compiler option description in
z/OS XL C/C++ User's Guide.

Avoid modifying code and
ignore Standard C++ language
features.

Use LANGLVL(COMPAT92) to tolerate
language incompatibilities.

© Copyright IBM Corp. 1996, 2019 101

102 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 18. Changes that affect Standard C++
compliance of language features

For information about setting the language level to meet your Standard C++ compliance objectives, see
Chapter 17, “Language level and your Standard C++ compliance objectives,” on page 101.

Refer to the z/OS XL C/C++ Language Reference for details.

Unqualified name lookups and the using directive
As of z/OS V1R10 XL C++ compiler, the location of the using directive determines how function calls are
resolved.

Figure 23 on page 103 provides an example of code that will be compiled differently by z/OS V1R10 XL C+
+ compiler than it was by earlier XL C++ compilers.

 }namespace bb {
 double sp1(double) { return 1.0; }
}

int main()
{
 double sp1(double);
 sp1(0);
 return 0;
}
 using namespace bb;

Figure 23. Example of code with a using directive

Prior to z/OS V1R10 XL C++ compiler, the compiler would resolve the call to the function sp1 in the
namespace bb even though the statement using namespace bb; is not located before the function is
called inside the main routine.

In the example in Figure 23 on page 103, the declaration of sp1 in the main function is a declaration in
the global namespace. As of z/OS V1R10 XL C++ compiler, the compiler will resolve that function call to
the declaration in the global namespace. Because the definition of sp1 is missing in the global
namespace, the binder will generate an error message.

To avoid the error at bind time, you can modify the example in Figure 23 on page 103 in any of the
following ways:

• Explicitly resolve the function call to sp1 in the namespace bb by using the namespace qualifier in the
function call

• Implicitly resolve the function call to sp1 in the namespace bb by moving the using directive above the
main routine.

• Make the function definition available in the global namespace.

For detailed information, refer to The using declaration and namespaces in z/OS XL C/C++ Language
Reference.

For examples of the using directive in a sample program, see CCNUBRC and CLB3ATMP.CPP. These are
documented in z/OS XL C/C++ User's Guide.

Order of destruction for statically initialized objects
As of z/OS V1R5 C++ compiler, you can use the LANGLVL(NOANSISINIT) option to maintain the order of
destruction for statically initialized objects whenever you compile programs that had previously been
compiled with z/OS V1R1 and earlier C++ compilers.

© Copyright IBM Corp. 1996, 2019 103

As of z/OS V1R2 C++ compiler, DLLs built by the compiler run object destructors differently from those
created with the earlier C++ compilers.

Note: The compiler became fully compliant with the C++ 2003 standard as of z/OS V1R2 C++ compiler.

Table 22. Destruction of statically initialized objects and compliance with Standard C++

z/OS V1R1 and earlier C++ compilers z/OS V1R2 and later compilers

Destructor calls are run as the last thing on the
atexit list, as part of the termination code.

For objects created with the Standard C++ way of
initializing (LANGLVL(ANSISINIT)):

• Destructor calls for objects created by z/OS V1R2
and later compilers are added to the atexit list.
This list will then be run before the atexit entry
for the termination code.

• Any DLL built with z/OS V1R2 and later compilers
will have the destructors for the global objects
run in the wrong order relative to other DLLs or
main program that were built with z/OS V1R1 and
earlier C++ compilers.

Implicit integer type declarations
The use of an implicit int in a declaration, as shown in Figure 24 on page 104, does not comply with
Standard C++. If you need to comply with the Standard C++, specify the type of every function and
variable. Otherwise, use the LANGLVL(IMPLICITINT) option to compile code containing declarations of
implicit integer types.

 const i; // previously meant const int i
 main() { } // previously returned int

Figure 24. Declaration of implicit integer type

As of z/OS V1R2 C++, the following code is no longer valid:

 inline f() {
 return 0;
 }

Scope of for-loop initializer declarations
In Standard C++, a variable in a for loop initializer declaration is declared within, and scoped to, the loop
body.

If you are migrating a program that was last compiled by a pre-z/OS V1R2 C++ compiler, you should be
aware that such variables were declared outside of the for-loop, and were scoped to the lexical block
containing the for-loop. See Figure 25 on page 105.

As of z/OS V1R2 C++ compiler, you can retain the original scope of a for-loop initializer declaration by
specifying the LANGLVL(NOANSIFOR) compiler option.

104 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

int i=0;

void f() {
 for(int i=0; i<10; i++) {
 if(...) break;
 }
 if(i==10) { ... } // 1
 ...
 }

Note: Prior to z/OS V1R2, the variable i was declared outside the for-loop.

Figure 25. A for-loop initializer declaration that does not comply with Standard C++

Visibility of friend declarations
As of the z/OS V1R2 C++ compiler, a friend class is not visible unless it is introduced into scope by
another declaration, as shown in Figure 26 on page 105. To allow friend declarations without
elaborated class names, use the LANGLVL(OLDFRIEND) option.

 class C {
 friend class D;
 };
 D* p; // error, D not in scope

Figure 26. friend declaration that is not visible

A friend class declaration must always be elaborated, as shown in Figure 27 on page 105.

 friend class C; // need class keyword

Figure 27. friend declaration that is made visible

Migration of friend declarations in class member lists
A friend declaration in a class member list grants, to the nominated friend function or class, access to
the private and protected members of the enclosing class. In pre-z/OS V1R2 C++ compilers, friend
declarations introduce the name of a nominated friend function to the scope that encloses the class
containing the friend declaration. As of z/OS V1R2 C++ compiler, friend declarations do not introduce
the name of a nominated friend function to the scope that encloses the class containing the friend
declaration.

The code in Figure 28 on page 105 will not compile successfully because the z/OS V2R4 XL C/C++
compiler will not know the function name lib_func1 at the point at which it is called in the function f.

 // g.C
 // ---
 class A {
 friend int lib_func1(int); // This function is from a library.
 };
 1
 int f(){
 return lib_func1(1);
 }

Note: The code in Figure 28 on page 105 will compile successfully if the following declaration is added to
the file in the global namespace scope at some point prior to the definition of the function named f:

 int lib_func1(int);

Figure 28. Example of code that does not introduce a friend function

cv-qualifications when the thrown and caught types are the same
As of z/OS V1R2 C++ compiler:

Chapter 18. Changes that affect Standard C++ compliance of language features 105

• A temporary copy is thrown rather than the actual object itself.
• The cv-qualification in the catch clause is not considered when one of the following are true:

– The type caught is the same (possibly cv-qualified) type as that thrown.
– The type caught is a reference to the same (possibly cv-qualified) type.

Note: cv is short form for const/volatile.
• New casts also throw exceptions.

This is not the case in z/OS V1R1 and earlier C++ compilers. As of z/OS V1R5 C++ compiler, there is no
available option to enable pre- z/OS V1R2 behavior.

Compiler options that are introduced in C++11 standard
The following topics describe compiler options that are introduced in the C++11 standard as of z/OS V2R1
XL C++ compiler. To make an application conform to the currently supported C++11 standard, you might
need to change your existing source code.

• “LANGLVL(AUTOTYPEDEDUCTION) compiler option (C++11)” on page 106
• “LANGLVL(C1XNORETURN) compiler option (C++11)” on page 107
• “LANGLVL(C99LONGLONG) compiler option (C++11)” on page 107
• “LANGLVL(C99PREPROCESSOR) compiler option (C++11)” on page 107
• “LANGLVL(CONSTEXPR) compiler option (C++11)” on page 107
• “LANGLVL(DECLTYPE) compiler option (C++11)” on page 107
• “LANGLVL(DEFAULTANDDELETE) compiler option (C++11)” on page 107
• “LANGLVL(DELEGATINGCTORS) compiler option (C++11)” on page 107
• “LANGLVL(EXPLICITCONVERSIONOPERATORS) compiler option (C++11)” on page 108
• “LANGLVL(EXTENDED0X) compiler option” on page 79
• “LANGLVL(EXTENDEDFRIEND) compiler option (C++11)” on page 108
• “LANGLVL(EXTENDEDINTEGERSAFE) compiler option (C++11)” on page 108
• “LANGLVL(EXTERNTEMPLATE) compiler option (C++11)” on page 108
• “LANGLVL(INLINENAMESPACE) compiler option (C++11)” on page 108
• “LANGLVL(REFERENCECOLLAPSING) compiler option (C++11)” on page 108
• “LANGLVL(RIGHTANGLEBRACKET) compiler option (C++11)” on page 109
• “LANGLVL(RVALUEREFERENCES) compiler option (C++11)” on page 109
• “LANGLVL(SCOPEDENUM) compiler option (C++11)” on page 109
• “LANGLVL(STATIC_ASSERT) compiler option (C++11)” on page 109
• “LANGLVL(VARIADICTEMPLATES) compiler option (C++11)” on page 109
• “WARN0X compiler option (C++11)” on page 109

Note: C++11 is a new version of the C++ programming language standard. IBM continues to develop and
implement the features of the new standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the features of the C++11 standard is
complete, including the support of a new C++ standard library, the implementation may change from
release to release. IBM makes no attempt to maintain compatibility, in source, binary, or listings and other
compiler interfaces, with earlier releases of IBM's implementation of the new features of the C++11
standard and therefore they should not be relied on as a stable programming interface.

LANGLVL(AUTOTYPEDEDUCTION) compiler option (C++11)
This option controls whether the auto type deduction feature is enabled. When
LANG(AUTOTYPEDEDUCTION) is in effect, you do not need to specify a type when declaring a variable.

106 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Instead, the compiler deduces the type of an auto variable from the type of its initializer expression. The
default is LANG(NOAUTOTYPEDEDUCTION). For detailed information, see AUTOTYPEDEDUCTION |
NOAUTOTYPEDEDUCTION that is documented in z/OS XL C/C++ User's Guide.

LANGLVL(C1XNORETURN) compiler option (C++11)
This option controls whether the _Noreturn function specifier is supported. The default is
LANGLVL(NOC1XNORETURN). For detailed information, see C1XNORETURN | NOC1XNORETURN that is
documented in z/OS XL C/C++ User's Guide.

LANGLVL(C99LONGLONG) compiler option (C++11)
This option controls whether the feature of C99 long long with IBM extensions adopted in C++11 is
enabled. When LANG(C99LONGLONG) is in effect, the C++ compiler provides the C99 long long with IBM
extensions feature. Source compatibility between the C and the C++ language is improved. The default is
LANG(NOC99LONGLONG). For detailed information, see C99LONGLONG | NOC99LONGLONG that is
documented in z/OS XL C/C++ User's Guide.

LANGLVL(C99PREPROCESSOR) compiler option (C++11)
This option controls whether the C99 preprocessor features adopted in C++11 are enabled. When
LANG(C99PREPROCESSOR) is in effect, C99 and C++11 compilers provide a common preprocessor
interface, which can ease the porting of C source files to the C++ compiler and avoid preprocessor
compatibility issues. The default is LANG(NOC99PREPROCESSOR). For detailed information, see
C99PREPROCESSOR | NOC99PREPROCESSOR that is documented in z/OS XL C/C++ User's Guide.

LANGLVL(CONSTEXPR) compiler option (C++11)
This option controls whether the generalized constant expressions feature is enabled. When you specify
the LANGLVL(CONSTEXPR) option, the compiler extends the expressions permitted within constant
expressions. A constant expression is one that can be evaluated at compile time. The default option is
LANGLVL(NOCONSTEXPR). For detailed information, see CONSTEXPR | NOCONSTEXPR that is
documented in z/OS XL C/C++ User's Guide.

LANGLVL(DECLTYPE) compiler option (C++11)
This option controls whether the declaration type feature is enabled. When LANG(DECLTYPE) is in effect,
you can get a type that is based on the resultant type of a possibly type-dependent expression. The
default is LANG(NODECLTYPE). For detailed information, see DECLTYPE | NODECLTYPE that is
documented in z/OS XL C/C++ User's Guide.

LANGLVL(DEFAULTANDDELETE) compiler option (C++11)
This option controls whether the defaulted and deleted functions feature is enabled. With this feature,
you can define explicitly defaulted functions whose implementations are generated by the compiler to
achieve higher efficiency. You can also define deleted functions whose usages are disabled by the
compiler to avoid calling unwanted functions. The default is LANGLVL(NODEFAULTANDDELETE). For
detailed information, see DEFAULTANDDELETE | NODEFAULTANDDELETE that is documented in z/OS XL
C/C++ User's Guide.

LANGLVL(DELEGATINGCTORS) compiler option (C++11)
This option controls whether the delegating constructors feature is enabled. When
LANG(DELEGATINGCTORS) is specified, you can concentrate common initializations and post
initializations in one constructor, which improves the readability and maintainability of the program. The
default is LANG(NODELEGATINGCTORS). For detailed information, see DELEGATINGCTORS |
NODELEGATINGCTORS that is documented in z/OS XL C/C++ User's Guide.

Chapter 18. Changes that affect Standard C++ compliance of language features 107

LANGLVL(EXPLICITCONVERSIONOPERATORS) compiler option (C++11)
This option controls whether the explicit conversion operators feature is enabled. When you specify the
LANGLVL(EXPLICITCONVERSIONOPERATORS) option, you can apply the explicit function specifier to the
definition of a user-defined conversion function, and thus to inhibit unintended implicit conversions
through the user-defined conversion function. The default is
LANG(NOEXPLICITCONVERSIONOPERATORS). For detailed information, see
EXPLICITCONVERSIONOPERATORS | NOEXPLICITCONVERSIONOPERATORS that is documented in
z/OS XL C/C++ User's Guide.

LANGLVL(EXTENDEDFRIEND) compiler option (C++11)
Extended friend declarations which relax syntax rules governing friend declarations are supported by the
new standard C++11. This feature is enabled by the new LANGLVL(EXTENDEDFRIEND) compiler option,
which can also be enabled by the group option LANGLVL(EXTENDED0X). Otherwise, the feature is
disabled by LANGLVL(NOEXTENDEDFRIEND). The default is LANGLVL(NOEXTENDEDFRIEND).

As of z/OS V1R11, when either LANGLVL(EXTENDEDFRIEND) or LANGLVL(EXTENDED0X) compiler option
is turned on, the __IBMCPP_EXTENDED_FRIEND macro is defined with the value '1' by the compiler, and
is undefined otherwise. For detailed information, see EXTENDEDFRIEND | NOEXTENDED0XFRIEND that
is documented in z/OS XL C/C++ User's Guide.

LANGLVL(EXTENDEDINTEGERSAFE) compiler option (C++11)
With this option, if a decimal integer literal that does not have a suffix containing u or U cannot be
represented by the long long int type, you can decide whether to use the unsigned long long int to
represent the literal or not. The default is LANG(NOEXTENDEDINTEGERSAFE). For detailed information,
see EXTENDEDINTEGERSAFE | NOEXTENDEDINTEGERSAFE that is documented in z/OS XL C/C++
User's Guide.

LANGLVL(EXTERNTEMPLATE) compiler option (C++11)
Explicit instantiation declarations provide you with the ability to suppress implicit instantiations of a
template specialization or its members when the LANGLVL(EXTERNTEMPLATE) option is turned on. It can
also be enabled by the group options LANGLVL(EXTENDED) or LANGLVL(EXTENDED0X). This feature is
disabled when LANGLVL(NOEXTERNTEMPLATE) is set. The default is LANGLVL(EXTERNTEMPLATE).

As of z/OS V1R11, when LANGLVL(EXTERNTEMPLATE) is set, the macro __IBMCPP_EXTERN_TEMPLATE
is defined as the preprocessing number 1, and is undefined otherwise. In both cases, the macro is
protected and a compiler warning will be emitted if it is undefined or redefined. For detailed information,
see EXTERNTEMPLATE | NOEXTERNTEMPLATE that is documented in z/OS XL C/C++ User's Guide.

LANGLVL(INLINENAMESPACE) compiler option (C++11)
This option controls whether the inline namespace definitions are enabled. A namespace definition
preceded by an initial inline keyword is defined as an inline namespace. When LANG(INLINENAMESPACE)
is in effect, members of the inline namespace can be defined and specialized as if they were also
members of the enclosing namespace. The default is LANG(NOINLINENAMESPACE). For detailed
information, see INLINENAMESPACE | NOINLINENAMESPACE that is documented in z/OS XL C/C++
User's Guide.

LANGLVL(REFERENCECOLLAPSING) compiler option (C++11)
This option controls whether the reference collapsing feature is enabled. The default option is
LANGLVL(NOREFERENCECOLLAPSING). For detailed information, see REFERENCECOLLAPSING |
NOREFERENCECOLLAPSING that is documented in z/OS XL C/C++ User's Guide.

108 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

LANGLVL(RIGHTANGLEBRACKET) compiler option (C++11)
This option controls whether the right angle bracket feature is enabled. The default option is
LANGLVL(NORIGHTANGLEBRACKET). For detailed information, see RIGHTANGLEBRACKET |
NORIGHTANGLEBRACKET that is documented in z/OS XL C/C++ User's Guide.

LANGLVL(RVALUEREFERENCES) compiler option (C++11)
This option controls whether the rvalue references feature is enabled. The default option is
LANGLVL(NORVALUEREFERENCES). For detailed information, see RVALUEREFERENCES |
NORVALUEREFERENCES that is documented in z/OS XL C/C++ User's Guide.

LANGLVL(SCOPEDENUM) compiler option (C++11)
This option controls whether the scoped enumeration feature is enabled. The default option is
LANGLVL(NOSCOPEDENUM). For detailed information, see SCOPEDENUM | NOSCOPEDENUM that is
documented in z/OS XL C/C++ User's Guide.

LANGLVL(STATIC_ASSERT) compiler option (C++11)
This option controls whether the static assertions feature is enabled. When LANGLVL(STATIC_ASSERT) is
set, a severe error message for compile-time assertions is issued on failure. The default is
LANG(NOSTATIC_ASSERT). For detailed information, see STATIC_ASSERT | NOSTATIC_ASSERT that is
documented in z/OS XL C/C++ User's Guide.

LANGLVL(VARIADICTEMPLATES) compiler option (C++11)
This option controls whether the variadic templates feature is enabled. When
LANGLVL(VARIADICTEMPLATES) is set, you can define class and function templates that have any
number (including zero) of parameters. The default is LANG(NOVARIADICTEMPLATES). For detailed
information, see VARIADICTEMPLATES | NOVARIADICTEMPLATES that is documented in z/OS XL C/C+
+ User's Guide.

WARN0X compiler option (C++11)
The compiler option WARN0X controls whether to inform users with messages about differences in their
programs caused by the migration from C++98 standard to C++11 standard. The default is NOWARN0X.
For detailed information, see WARN0X | NOWARN0X that is documented in z/OS XL C/C++ User's Guide.

Errors due to changes in compiler behavior
This topic describes coding that compiles without errors in z/OS V1R1 and earlier C/C++ compilers but
produces errors or warnings as of z/OS V1R7 XL C/C++ compiler. For more details on compiler messages,
refer to z/OS XL C/C++ Messages.

C++ class access errors
If your code has not been updated since z/OS V1R2, compiling it could raise exceptions because of
changes in Standard C++ compliance. See “CCN5413 exception” on page 109 and “CCN5193 exception”
on page 110.

CCN5413 exception
An access specifier determines the accessibility of members that follow it, either until the next access
specifier or until the end of the class definition. Violation of this rule will result in the following error
message:

CCN5413:"A::B" is already declared with a different access

Chapter 18. Changes that affect Standard C++ compliance of language features 109

If you later define a class member within its class definition, its access specification must be the same as
its declaration. The code in Figure 29 on page 110 violates this rule.

class A {
 public:
 class B;
 private:
 class B {}; 1
};

Note: The compiler will not allow the definition of class B because this class has already been declared as
private. To correct the program, remove the private keyword.

Figure 29. Code that results in CCN5413 exceptions

CCN5193 exception
When you specify a friend within a class, you must use the class name instead of the type-definition
name. Without modification, the code in Figure 30 on page 110 would result in the following error
message:

CCN5193: A typedef name cannot be used in this context

 class A { };
 typedef A B;
 class C {
 friend class B; 1
 };

Note: Do not use the type-definition name; instead, use the name of the class:

friend class A;

Figure 30. Example: Correcting a type-definition name used out of context

Exceptions caused by ambiguous overloads
Programming languages - C (ISO/IEC 9899:2003) introduced error messages for standard floating point
and long double overloads of standard math functions.

As of z/OS V1R2 C++ compiler, compiling the code in Figure 31 on page 110 will produce the following
error message:

CCN5219: The call to "pow" has no best match

To handle the exception, you could specify the LANGLVL(OLDMATH) option, which removes the float and
long double overloads. If you don't want to remove the overloads, you can modify the code by casting the
pow arguments.

 #include <math.h>
 int main()
 {
 float a = 137;
 float b;
 b = pow(a, 2.0); 1
 return 0;
 }

Note: The call to pow has no best match. To fix the problem, cast 2.0 to be of type float:

 b = pow(a, (float)2.0);

Figure 31. Code modification to handle CCN5219 exception

110 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Exceptions caused by user-defined conversions
User-defined conversions must be unambiguous, or they are not called.

 //e.C
 struct C {};
 struct A {
 A();
 A(const C &);
 A(const A &);
 };
 struct B {
 operator A() const { A a ; return a;};
 operator C() const { C c ; return c;};
 };
 void f(A x) {};
 int main(){
 B b;
 f((A)b); // The call matches two constructors for A instead of calling operator A()
 return 0;
 }

Figure 32. Ambiguous user-defined conversions

Error messages: Error messages are listed below.

CCN5216: An expression of type B cannot be converted to A.
CCN5219: The call to “A::A” has no best match.
CCN6228: Argument number 1 is an lvalue of type “B”.
CCN6202: No candidate is better than “A::A(const A&)”.
CCN6231: The conversion from argument number 1 to “const A &” uses the
user-defined conversion “B::operator A() const” followed by an
lvalue-to-rvalue transformation.
CCN6202: No candidate is better than “A::A(const C &)”.
CCN6231: The conversion from argument number 1 to “const C &” uses the
user-defined conversion “B::operator C() const ”.

Potential solutions: Possible solutions are listed below.

• Changing f((A)b) to the explicit call f(b.operator A())
• Removing the constructor A(const C &)
• Adding a constructor A(B)
• Removing either operator A() or operator C()

Note: The solution you choose depends on your access to classes A and B.

Issues caused by the use of incomplete types in exception-specifications
A type that is denoted in an exception-specification should not denote an incomplete type. Otherwise, the
compiler will diagnose with a severe error where there is an incomplete class type, and an error message
is produced. For example:

struct MyExcept;
void f1() throw (MyExcept);

The compiler is required to produce a diagnostic.

The requirement for a complete class means that templates might be instantiated. For example:

template <unsigned N>
struct A {
 __static_assert(N != 0, "Error");
};

void f2() throw (A<0>);

The template specialization A<0> is instantiated from the definition of the primary template, resulting in a
static assertion error.

Chapter 18. Changes that affect Standard C++ compliance of language features 111

Syntax errors with array new
Prior to z/OS V1R2, C/C++ compilers treated the following two statements as semantically equivalent:

 new (int *) [1]; //*Syntactially incorrect statement
 new int* [1];

The first statement is syntactically incorrect even in older versions of the C++ Standard. However,
previous versions of C++ accepted it.

As of z/OS V1R2, the C/C++ compiler will produce a compilation error message that specifies the
syntactically incorrect statement.

112 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Part 6. Migration issues for C/C++ applications that
use other IBM products

The following topics provide information about migration issues resulting from enhancements to the
interoperability between XL C/C++ and the other products:

• Chapter 19, “Migration issues with earlier C/C++ applications that run CICS statements,” on page 115
• Chapter 20, “Migration issues with earlier C/C++ applications that use DB2,” on page 119

© Copyright IBM Corp. 1996, 2019 113

114 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 19. Migration issues with earlier C/C++
applications that run CICS statements

This topic provides information about:

• “Migration of CICS statements from pre-OS/390 C/C++ applications” on page 115
• “Migration of CICS statements from earlier XL C/C++ applications” on page 117

Migration of CICS statements from pre-OS/390 C/C++ applications
When you are migrating applications or programs with CICS statements from pre-OS/390 C/C++
applications, be aware of changes and constraints in the following areas:

• “CICS statement translation options” on page 115
• “HEAP option used with the interface to CICS” on page 115
• “User-developed exit routines” on page 115
• “Multiple libraries under CICS” on page 115

CICS statement translation options
As of z/OS V1R7 XL C/C++ compiler, there is an new option for translating CICS statements into C or C++
code: the z/OS XL C/C++ compiler integrated CICS translator. The standalone CICS translator remains a
translation option. For information about when to use the new option, refer to Translating and compiling
for reentrancy in z/OS XL C/C++ Programming Guide.

HEAP option used with the interface to CICS
In C/370 V2, the location of heap storage under CICS was primarily determined by the residence mode
(RMODE) of the program.

With Language Environment services, heap storage is determined only by the HEAP(,,ANYWHERE|BELOW)
options. RMODE does not affect where the heap is allocated. If the location of heap storage is important,
you might want to change the source code accordingly.

User-developed exit routines
With Language Environment services in a CICS environment, abnormal termination exit routine CEECDATX
is automatically linked at installation time.

This change affects you if you have supplied, or need to supply, your own exit routine. The sample exit
routine had been available in the sample library provided with AD/Cycle LE/370 V1R3. It automatically
generates a system dump (with abend code 4039) whenever an abnormal termination occurs.

You can modify CEECDATX to suppress the dumps. CEECDATX is available in a z/OS V2R4 XL C/C++
runtime library.

Multiple libraries under CICS
You cannot run two different sets of runtime services within one CICS region.

Both the C/370 V2 CICS interface (EDCCICS) and the Language Environment CICS interface could be
present in a CICS system through CEDA/PPT definitions and inclusion of modules in the APF STEPLIB. If
both interfaces are present, the Language Environment interface will be initialized by CICS when the
region is initialized.

You should be aware of changes and constraints in the following areas:

© Copyright IBM Corp. 1996, 2019 115

• “CICS abend codes and messages” on page 116
• “CICS reason codes” on page 116
• “Standard stream support under CICS” on page 116
• “Changes in stderr output under CICS” on page 117
• “Transient data queue names under CICS” on page 117

CICS abend codes and messages
As of z/OS V1R7 XL C/C++ compiler, when you use the CICS option to compile programs with embedded
CICS statements, the compiler will issue messages whenever it detects a syntax error before a CICS
statement is fully parsed. After a CICS statement is fully parsed, CICS will issue any required messages as
described in CICS Messages and Codes. The compiler will prepend these CICS messages with product and
line numbers and then merge them with the other compiler messages in a single message area.

Abend codes (for example, ACC2) that were used by C/370 V2 under CICS are not issued; the equivalent
Language Environment abend code (for example, 4nnn) is issued instead.

Default option for ABTERMENC changed to ABEND
As of OS/390 V2R9, the default option for ABTERMENC is ABEND instead of RETCODE. If you are
expecting the default behavior of ABTERMENC to be RETCODE, you must change the setting in CEECOPT.
For details on changing CEECOPT, refer to z/OS Language Environment Customization.

CICS reason codes
Reason codes that appeared in the CICS message console log have been changed. The current codes are
documented in z/OS Language Environment Debugging Guide.

Standard stream support under CICS
With Language Environment services, CICS records sent to the transient data queues associated with
stdout and stderr with default settings take the format of the message shown in Figure 33 on page
116.

where:
ASA

is the carriage-control character
terminal id

is a 4-character terminal identifier
transaction id

is a 4-character transaction identifier
sp

is a space
Time Stamp

is the date and time displayed in the format YYYYMMDDHHMMSS
data

is the data sent to the standard streams stdout and stderr.

Figure 33. 1 ASA 4 terminal ID 4 transaction ID 1 sp 14 time stamp 1 sp 108 data

With Language Environment services, CICS records are sent in this format, whether they are directed to
the transient data queues associated with stdout and stderr. You should be aware of this change if you

116 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

are migrating to z/OS V2R4 XL C/C++ compiler, because, previously, this message format had been used
for messages directed to the data queue associated with stdout only.

Changes in stderr output under CICS
Output from stderr is sent to the CICS transient data queue, CESE, which is also used for Language
Environment runtime error messages, dumps, and storage reports. If you previously used this file
exclusively for C/370 stderr output, you should note that the output might be different than you expect.

Transient data queue names under CICS
Table 23 on page 117C/370 transient data queue names are mapped to Language Environment transient
data queue names:

Table 23. Transient data queue names under CICS

C/370 name Language Environment name

CCSI CESI

CCSO CESO

CCSE CESE

Migration of CICS statements from earlier XL C/C++ applications
When you are migrating applications or programs with CICS statements from earlier C/C++ applications,
be aware of the following possibilities:

• “CICS TS V4.1 with "Extended MVS Linkage Convention"” on page 117
• “Customized CEECCSD.COPY and CEECCSDX.COPY files and iconv() changes” on page 117

CICS TS V4.1 with "Extended MVS Linkage Convention"
The FLOAT(AFP) compiler option instructs the compiler to generate code that uses the full complement of
16 floating-point registers (FPRs). The four original floating-point registers are numbered FPR0, FPR2,
FPR4, and FPR6; the additional floating-point (AFP) registers are numbered FPR 1, FPR 3, FPR 5, FPR 7
and FPRs 8 through 15. By convention, FPRs 1, 3, 5, and 7 are always volatile. This means that any called
routine could change their values without saving and restoring the original values. However, FPRs 8
through 15 are considered non-volatile by the caller.

In z/OS V1R9 XL C/C++ compiler (and later compilers), FLOAT(AFP) supports the VOLATILE | NOVOLATILE
suboption. The default is NOVOLATILE; the compiler assumes that any called subroutines will preserve
the values in registers FPRs 8 through 15. It is safe to use NOVOLATILE in most environments, including
batch. However, CICS environments prior to CICS TS V4.1 use FPRs 7 through 15 to perform their own
task switching. Therefore, you need to specify the FLOAT(AFP(VOLATILE)) option to instruct the compiler
to treat FPRs 8 through 15 as volatile.

As of CICS TS V4.1, CICS TS fully supports MVS Linkage conventions. Therefore, if you are compiling
floating point code to be run on CICS TS V4.1, you no longer need to use the FLOAT(AFP(VOLATILE))
option.

Customized CEECCSD.COPY and CEECCSDX.COPY files and iconv() changes
As of z/OS V1R9, load modules for iconv() converters have been renamed in the two CICS sample files
CEECCSD.COPY and CEECCSDX.COPY. If your CEECCSD.COPY and CEECCSDX.COPY files have been
customized, you need to rename the affected load module entries. Otherwise, the iconv_open() and
iconv_close() functions cannot distinguish between a customer-created converter and a converter
shipped with the Language Environment element.

Language Environment converters are:

Chapter 19. Migration issues with earlier C/C++ applications that run CICS statements 117

• Direct converters (including GENXLT, C and Direct Unicode Converters).
• Indirect Binary converter tables (shipped in <hlq>.SCEEUTBL).
• Indirect Binary converter tables (shipped in the HFS).

Renaming direct converters
The direct converters are shipped as load modules in <hlq>.SCEERUN for 31-bit base code, and in
<hlq>.SCEERUN2 for XPLINK and 64-bit base code.

Direct converters for 31-bit base code
Prior to z/OS V1R9, direct converters for 31-bit base code are shipped as load modules in <hlq>.SCEERUN
with a four character prefix of either CEUU or EDCU, with an alias defined for the unshipped prefix. For
example, if a given converter’s load module has a name of CEUUxxxx, it will also have an alias of
EDCUxxxx.

Change the prefix for all 31-bit base direct converters to CEUL. An alias prefix will not be required. In
other words:

• A direct converter that was named EDCUxxxx in <hlq>.SCEERUN with an alias of CEUUxxxx will be
named CEULxxxx in <hlq>.SCEERUN without an alias.

• A direct converter that was named CEUUxxxx in <hlq>.SCEERUN with an alias of EDCUxxxx will be
named CEULxxxx in <hlq>.SCEERUN without an alias.

Direct converters for XPLINK processing
Direct converters for XPLINK processing are shipped as load modules in <hlq>.SCEERUN2 with a four
character prefix of CEHU. Change the load module prefix for all direct converters for XPLINK to CEHL. In
other words, a direct converter that was named CEHUxxxx in <hlq>.SCEERUN2 will be named CEHLxxxx
in <hlq>.SCEERUN2.

Direct converters for 64-bit base code
Direct converters for 64-bit base code are shipped as load modules in <hlq>.SCEERUN2 with a four
character prefix of CEQU. Change the load module prefix for all 64-bit direct converters to CEQL. In other
words, a direct converter that was named CEQUxxxx in <hlq>.SCEERUN2 will be named CEQLxxxx in
<hlq>.SCEERUN2.

Renaming indirect binary converter tables
Prior to z/OS V1R9, the indirect binary converter tables (ucmap binaries) were shipped in
<hlq>.SCEEUTBL with a prefix of EDCU or CEUU, with aliases CEHU for XPLINK and CEQU for 64-bit
programs. Change the prefix name for the ucmap binary converter tables in <hlq>.SCEEUTBL to CEUL,
with alias name prefixes of CEHL for XPLINK and CEQL for 64-bit base code. In other words, an indirect
binary converter table that was named EDCUxxxx in <hlq>.SCEEUTBL will be named CEULxxxx, with alias
names of CEHLxxxx and CEQLxxxx.

Renaming HFS indirect binary converter tables
As of z/OS V1R9, the indirect binary converter tables (ucmap binaries) shipped in the HFS
directory /usr/lib/nls/locale/uconvTable are named with a suffix of .libcnvtbl. Add the suffix
libcnvtbl to the names of all ucmap binary converter tables in the HFS directory /usr/lib/nls/
locale/uconvTable. In other words, an indirect binary converter table currently named IBM-xxxxx
will be renamed to IBM-xxxxx.libcnvtbl.

118 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Chapter 20. Migration issues with earlier C/C++
applications that use DB2

When you are migrating C/C++ applications that use IBM DB2 services, be aware of the removal of the
Database Access Class Library utility.

In addition, beware of the following information:

• “Namespace violations and SQL coprocessor-based compilations” on page 119
• “Potential need to specify DBRMLIB with the SQL option” on page 120

Related information: See the following related information.

• For more information about the IBM XL C/C++ DB2 coprocessor, refer to Using the XL C/C++ DB2
coprocessor in z/OS XL C/C++ Programming Guide.

• For detailed information about using these macros with the SQL option, refer to SQL | NOSQL in z/OS XL
C/C++ User's Guide.

• For DB2-supplied documentation, see Db2 for z/OS in IBM Knowledge Center (www.ibm.com/support/
knowledgecenter/SSEPEK/db2z_prodhome.html).

Namespace violations and SQL coprocessor-based compilations
As of z/OS V1R10 XL C/C++ compiler, when you use the SQL option for SQL coprocessor-based
compilations, you can modify your source code to handle an error condition that would result from using
an identifer that has the same name as one of the new predefined but unprotected macros added in this
release. The names of unprotected macros are in the preprocessing namespace.

Note: Typically, C/C++ compilers treat predefined, unprotected macros as if the source code had been
preprocessed with a #define directive (such as #define SQL_VARBINARY_INIT(s)
{sizeof(s)-1, s}).

The XL C/C++ compiler recognizes the following macros as predefined but unprotected:

• SQL_VARBINARY_INIT
• SQL_BLOB_INIT
• SQL_CLOB_INIT
• SQL_DBCLOB_INIT

For example, if you use the z/OS V2R4 XL C/C++ compiler to compile the source code shown in Figure 34
on page 119 with the SQL option, a message will inform you that the macro is already defined.

Note: If you use a pre-z/OS V1R10 compiler, you will get undetermined results.

--- test.c ---
#define SQL_VARBINARY_INIT 1
--- end test.c ---

Figure 34. Sample source code

To avoid the error condition you can:

• Perform a macro definition check and handle the error condition, as shown in Figure 35 on page 120.
• Explicitly undefine the macro, as shown in Figure 37 on page 120.

© Copyright IBM Corp. 1996, 2019 119

http://www.ibm.com/support/knowledgecenter/SSEPEK/db2z_prodhome.html
http://www.ibm.com/support/knowledgecenter/SSEPEK/db2z_prodhome.html

Example: Performing a macro definition check
If you run a macro definition check on the SQL_ . . . _INIT identifier , you can specify a preprocessing path
that is based on the return code generated by the check.

For example:

• Compiling the code in Figure 35 on page 120 with the SQL option, and then running it, would generate a
return code of "55" if the compiler is z/OS V1R10 XL C/C++ or later, and "66" if a previous version of the
compiler is used.

• Compiling the code in Figure 36 on page 120 with the SQL option, and then running it, would generate a
return code of "55".

--- test.c ---
#ifdef SQL_VARBINARY_INIT
 int a = 55;
 #else
 int a = 66;
#endif

int main(void) {
 return a;
}
--- end test.c ---

Figure 35. Portable macro definition check

EXEC SQL INCLUDE SQLCA;

int main(void) {
 EXEC SQL BEGIN DECLARE SECTION;
 #ifdef SQL_VARBINARY_INIT
 SQL TYPE IS VARBINARY(100) myvar = SQL_VARBINARY_INIT("abc");
 #else
 SQL TYPE IS VARBINARY(100) myvar = {sizeof("abc")-1, "abc"};
 #endif
 EXEC SQL END DECLARE SECTION;
 return 55;
}

Figure 36. Macro definition check and compiler invocation

Example: Explicitly undefining and redefining a macro
The code in Figure 37 on page 120 will always be compiled successfully with or without the SQL option
because it is completely valid for users to undefine and redefine the various SQL_*_INIT macros.

--- test.c ---
#undef SQL_VARBINARY_INIT
#define SQL_VARBINARY_INIT 1
--- end test.c ---

Figure 37. Explicitly undefining a macro

Potential need to specify DBRMLIB with the SQL option
As of z/OS V1R9 XL C/C++ compiler, it is not necessary to specify the DBRMLIB option with the SQL
option. For information about using these options, see z/OS XL C/C++ User's Guide.

When your source code has embedded SQL statements, you need to use DBRMLIB with SQL only when
the specified APARs have been applied to z/OS V1R8 XL C with APAR PK38679.

For more information about using SQL statements, refer to DB2 Application Programming and SQL Guide.
Useful topics include:

• "Processing SQL statements by using the DB2 coprocessor"

120 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

• "Preparing an external SQL procedure by using JCL" (lists the external SQL procedure samples shipped
with DB2).

Note: The PHASEID compiler option shows the latest PTF that has been applied to the compiler. For
detailed information, refer to PHASEID compiler option in z/OS XL C/C++ User's Guide.

Chapter 20. Migration issues with earlier C/C++ applications that use DB2 121

122 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Appendix A. Accessibility

Accessible publications for this product are offered through IBM Knowledge Center (www.ibm.com/
support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a detailed message to the
Contact the z/OS team web page (www.ibm.com/systems/campaignmail/z/zos/contact_z) or use the
following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted mobility or limited vision
use software products successfully. The accessibility features in z/OS can help users do the following
tasks:

• Run assistive technology such as screen readers and screen magnifier software.
• Operate specific or equivalent features by using the keyboard.
• Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user interfaces found in z/OS.
Consult the product information for the specific assistive technology product that is used to access z/OS
interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following information describes how to use
TSO/E and ISPF, including the use of keyboard shortcuts and function keys (PF keys). Each guide includes
the default settings for the PF keys.

• z/OS TSO/E Primer
• z/OS TSO/E User's Guide
• z/OS ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM Knowledge Center with
a screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or
more syntax elements are always present together (or always absent together), they can appear on the
same line because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers
correctly, make sure that the screen reader is set to read out punctuation. All the syntax elements that
have the same dotted decimal number (for example, all the syntax elements that have the number 3.1)

© Copyright IBM Corp. 1996, 2019 123

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/campaignmail/z/zos/contact_z

are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax
can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with
dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all
the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the
syntax elements. Occasionally, these words and symbols might occur at the beginning of the element
itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the
backslash (\) character. The * symbol is placed next to a dotted decimal number to indicate that the
syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the
format 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* * FILE
indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the
syntax just before the items they separate. These characters can appear on the same line as each item, or
on a separate line with the same dotted decimal number as the relevant items. The line can also show
another symbol to provide information about the syntax elements. For example, the lines 5.1*, 5.1
LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax
elements, the elements must be separated by a comma. If no separator is given, assume that you use a
blank to separate each syntax element.

If a syntax element is preceded by the % symbol, it indicates a reference that is defined elsewhere. The
string that follows the % symbol is the name of a syntax fragment rather than a literal. For example, the
line 2.1 %OP1 means that you must refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.
? indicates an optional syntax element

The question mark (?) symbol indicates an optional syntax element. A dotted decimal number
followed by the question mark symbol (?) indicates that all the syntax elements with a corresponding
dotted decimal number, and any subordinate syntax elements, are optional. If there is only one syntax
element with a dotted decimal number, the ? symbol is displayed on the same line as the syntax
element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted decimal
number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the
syntax elements NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted decimal number
followed by the ! symbol and a syntax element indicate that the syntax element is the default option
for all syntax elements that share the same dotted decimal number. Only one of the syntax elements
that share the dotted decimal number can specify the ! symbol. For example, if you hear the lines 2?
FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the
FILE keyword. In the example, if you include the FILE keyword, but do not specify an option, the
default option KEEP is applied. A default option also applies to the next higher dotted decimal
number. In this example, if the FILE keyword is omitted, the default FILE(KEEP) is used. However, if
you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option
KEEP applies only to the next higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax element can be used zero
or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1* data
area, you know that you can include one data area, more than one data area, or no data area. If you
hear the lines 3* , 3 HOST, 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Notes:

124 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted
decimal number, you can repeat that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal
number, you can use more than one item from the list, but you cannot use the items more than
once each. In the previous example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least once. A dotted decimal
number followed by the + symbol indicates that the syntax element must be included one or more
times. That is, it must be included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and
2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the +
symbol can repeat a particular item if it is the only item with that dotted decimal number. The +
symbol, like the * symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix A. Accessibility 125

126 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in only
the HTML plug-in output for the Knowledge Centers. Use of hyperlinks in other output formats of this
information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road

© Copyright IBM Corp. 1996, 2019 127

Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or

128 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details in
the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMSdfp, JES2, JES3, and MVS, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease if
a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently
change when service for particular servers or devices is withdrawn. Likewise, the levels of other software
products supported on a particular release of z/OS are subject to the service support lifecycle of those

Notices 129

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and
product documentation) can include references to hardware and software that is no longer supported.

• For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/
software/support/systemsz/lifecycle)

• For information about currently-supported IBM hardware, contact your IBM representative.

Programming interface information
This publication documents intended Programming Interfaces that allow the customer to write z/OS XL
C/C++ programs.

Standards
The following standards are supported in combination with the Language Environment element:

• The C language is consistent with Programming languages - C (ISO/IEC 9899:1999) and a subset of
Programming languages - C (ISO/IEC 9899:2011). For more information, see International Organization
for Standardization (ISO) (www.iso.org).

• The C++ language is consistent with Programming languages - C++ (ISO/IEC 14882:1998),
Programming languages - C++ (ISO/IEC 14882:2003(E)), and a subset of Programming languages - C++
(ISO/IEC 14882:2011).

The following standards are supported in combination with the Language Environment and z/OS UNIX
System Services elements:

• A subset of IEEE Std. 1003.1-2001 (Single UNIX Specification, Version 3). For more information, see
IEEE (www.ieee.org).

• IEEE Std 1003.1—1990, IEEE Standard Information Technology—Portable Operating System Interface
(POSIX)—Part 1: System Application Program Interface (API) [C language], copyright 1990 by the
Institute of Electrical and Electronic Engineers, Inc.

• The core features of IEEE P1003.1a Draft 6 July 1991, Draft Revision to Information Technology—
Portable Operating System Interface (POSIX), Part 1: System Application Program Interface (API) [C
Language], copyright 1992 by the Institute of Electrical and Electronic Engineers, Inc.

• IEEE Std 1003.2—1992, IEEE Standard Information Technology—Portable Operating System Interface
(POSIX)—Part 2: Shells and Utilities, copyright 1990 by the Institute of Electrical and Electronic
Engineers, Inc.

• The core features of IEEE Std P1003.4a/D6—1992, IEEE Draft Standard Information Technology—
Portable Operating System Interface (POSIX)—Part 1: System Application Program Interface (API)—
Amendment 2: Threads Extension [C language], copyright 1990 by the Institute of Electrical and
Electronic Engineers, Inc.

• The core features of IEEE 754-1985 (R1990) IEEE Standard for Binary Floating-Point Arithmetic (ANSI),
copyright 1985 by the Institute of Electrical and Electronic Engineers, Inc.

• X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2, copyright 1994 by The
Open Group

• X/Open CAE Specification, Networking Services, Issue 4, copyright 1994 by The Open Group
• X/Open Specification Programming Languages, Issue 3, Common Usage C, copyright 1988, 1989, and

1992 by The Open Group
• United States Government's Federal Information Processing Standard (FIPS) publication for the

programming language C, FIPS-160, issued by National Institute of Standards and Technology, 1991

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be

130 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.iso.org
http://www.iso.org
http://www.ieee.org

trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and Trademark information (www.ibm.com/legal/copytrade.shtml).

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Notices 131

http://www.ibm.com/legal/copytrade.shtml

132 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Bibliography

This bibliography lists the publications for IBM products that are related to z/OS XL C/C++. It includes
publications covering the application programming task. The bibliography is not a comprehensive list of
the publications for these products, however, it should be adequate for most z/OS XL C/C++ users. Refer
to z/OS Information Roadmap for a complete list of publications belonging to the z/OS product.

z/OS
• z/OS Introduction and Release Guide
• z/OS Planning for Installation
• z/OS Release Upgrade Reference Summary
• z/OS Information Roadmap
• z/OS Licensed Program Specifications
• z/OS Upgrade Workflow
• z/OS Program Directory

z/OS XL C/C++
• z/OS XL C/C++ Programming Guide
• z/OS XL C/C++ User's Guide
• z/OS XL C/C++ Language Reference
• z/OS XL C/C++ Messages
• z/OS XL C/C++ Runtime Library Reference
• z/OS C Curses
• z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer
• Standard C++ Library Reference

z/OS Metal C Runtime Library
• z/OS Metal C Programming Guide and Reference

z/OS Runtime Library Extensions
• z/OS Common Debug Architecture User's Guide
• z/OS Common Debug Architecture Library Reference
• DWARF/ELF Extensions Library Reference

Debug Tool
• Debug Tool documentation, which is available at Debug Tool Utilities and Advanced Functions

(www.ibm.com/software/awdtools/debugtool).

z/OS Language Environment
• z/OS Language Environment Concepts Guide
• z/OS Language Environment Customization
• z/OS Language Environment Debugging Guide
• z/OS Language Environment Programming Guide

© Copyright IBM Corp. 1996, 2019 133

http://www.ibm.com/software/awdtools/debugtool
http://www.ibm.com/software/awdtools/debugtool

• z/OS Language Environment Programming Reference
• z/OS Language Environment Runtime Application Migration Guide
• z/OS Language Environment Writing Interlanguage Communication Applications
• z/OS Language Environment Runtime Messages

Assembler
Assembler documentation, which is available at High Level Assembler and Toolkit Feature in IBM
Knowledge Center (www.ibm.com/support/knowledgecenter/SSENW6).

COBOL
• COBOL documentation, which is available at the Enterprise COBOL for z/OS documentation library

(www.ibm.com/support/docview.wss?uid=swg27036733).

PL/I
• PL/I documentation, which is available at the IBM Enterprise PL/I for z/OS library (www.ibm.com/

support/docview.wss?uid=swg27036735).

VS FORTRAN
• VS FORTRAN documentation, which is available at the VS FORTRAN Library (www.ibm.com/software/

awdtools/fortran/vsfortran/library.html).

CICS Transaction Server for z/OS
• CICS Transaction Server for z/OS documentation, which is available at CICS Transaction Server for z/OS

(www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html)

DB2
• DB2 for z/OS documentation, which is available at Db2 for z/OS in IBM Knowledge Center

(www.ibm.com/support/knowledgecenter/SSEPEK/db2z_prodhome.html).

IMS/ESA®

• IMS documentation, which is available at IMS in IBM Knowledge Center (www.ibm.com/support/
knowledgecenter/SSEPH2).

MVS
• z/OS MVS Program Management: User's Guide and Reference
• z/OS MVS Program Management: Advanced Facilities

QMF
• QMF documentation, which is available at the DB2 Query Management Facility Library (www.ibm.com/

support/docview.wss?uid=swg27021603).

DFSMS
• z/OS DFSMS Introduction
• z/OS DFSMS Managing Catalogs
• z/OS DFSMS Using Data Sets
• z/OS DFSMS Macro Instructions for Data Sets

134 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

http://www.ibm.com/support/knowledgecenter/SSENW6
http://www.ibm.com/support/knowledgecenter/SSENW6
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036733
http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/support/docview.wss?uid=swg27036735
http://www.ibm.com/software/awdtools/fortran/vsfortran/library.html
http://www.ibm.com/software/awdtools/fortran/vsfortran/library.html
http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html
http://www.ibm.com/support/knowledgecenter/SSEPEK/db2z_prodhome.html
http://www.ibm.com/support/knowledgecenter/SSEPEK/db2z_prodhome.html
http://www.ibm.com/support/knowledgecenter/SSEPH2
http://www.ibm.com/support/knowledgecenter/SSEPH2
http://www.ibm.com/support/docview.wss?uid=swg27021603
http://www.ibm.com/support/docview.wss?uid=swg27021603

• z/OS DFSMS Access Method Services Commands

Bibliography 135

136 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Index

Special Characters
__cplusplus standard macro

determining ISO standard level supported by compiler
99

__IBMCPP_EXTENDED_FRIEND macro
as of z/OS V1R11 108

__librel() function
using to determine library release 23

_64 suffix for compiler invocations
as of z/OS V1R6 C/C++ 81

_CEE_RUNOPTS environment variable
as of z/OS V1R10 91

_DEBUG_FORMAT environment variable
as of z/OS V1R6 C/C++

with LP64 56
_EDC_PTHREAD_YIELD environment variable 93
_EDC_PUTENV_COPY environment variable

POSIX compliance 61
retaining OS/390 behavior 35, 61
retaining pre- z/OS V1R5 C/C++ behavior 93

_ICONV_MODE environment variable
as of z/OS V1R9 XL C/C++

user-defined conversion tables 83
_Ieee754.h header file

as of z/OS V1R9 XL C++
potential need to include 69

_LONG_LONG macro
as of z/OS V1R6 C/C++ 54

_OPEN_SYS_SOCK_IPV6 macro
as of z/OS V1R7 XL C++ 69, 84

_PVERSION environment variable
as of z/OS V1R8 XL C/C++ 88

_TZ environment variable 36
_x suffix for compiler invocations

as of z/OS V1R6 C/C++ 81
_XOPEN_SOURCE_EXTENDED macro

as of z/OS V1R9 XL C++ 84
–qcpluscmt command option

as of z/OS V1R7 XL C/C++
when to override 82

@@CTEST objects
relinking C/370 modules 26

@euro locale
as of z/OS V1R6 94

@preeuro locale
as of z/OS V1R6 94

#pragma comment
and Unicode character translation

as of z/OS V1R10 XL C/C++ 51
#pragma enum

as of z/OS V1R2 C/C++ 52
#pragma leaves

as of OS/390 V2R9 57
#pragma map

as of z/OS V1R3 C/C++ 26
#pragma pack(2)

#pragma pack(2) (continued)
as of z/OS V1R2 XL C++

unexpected C++ output 71
as of z/OS V1R6 C++

alignment incompatibilities when binding C and C++
modules 88

#pragma reachable
as of OS/390 V2R9 57

#pragma runopts
pre-OS/390 source code 13

#pragma unroll()
as of z/OS V1R7 XL C/C++ 71

#pragma variable
as of OS/390 V2R10 C/C++

reentrancy 56
as of OS/390 V2R9

reentrancy 55
as of z/OS V1R7 XL C/C++

binding OS/390 modules 59

Numerics
32-bit processing

as of z/OS V1R6 C/C++
default object model 88

64-bit processing
as of z/OS V1R6 C/C++

default object model 88
as of z/OS V1R8 XL C/C++

GONUMBER compiler option 78
64-bit virtual memory

as of z/OS V1R8 XL C/C++
IPA(LINK) 53
IPA(LINK) and ulimit command 83
setting MEMLIMIT value 53

A
ABEND, compiler

as of OS/390 V2R9
default option (CICS) 116

as of z/OS V1R7 XL C/C++
Language Environment codes, under CICS 116

as of z/OS V1R8 XL C/C++
insufficient storage 53
MEMLIMIT system parameter and IMEMLIM
variable 53, 83

abnormal terminations
as of OS/390 V2R9

Language Environment enclaves 33
as of z/OS V1R8 XL C/C++

insufficient storage 53
changes from C/370 V2 37
running pre-OS/390 programs 33

access-checking
as of z/OS V1R2

classes (C++ only) 109

Index 137

accessibility
contact IBM 123
features 123

accuracy improvements
as of z/OS V1R9

IEEE754 math functions 95
addressing incompatibilities

pre-OS/390 14
AFP registers

as of z/OS V1R9
CICS processing 117

alignment incompatibilities
as of z/OS V1R6 C/C++

between object models 88
as of z/OS V1R6 C++

binding C and C++ aggregates, both with #pragma
pack(2) 88

ambiguous overloads
as of z/OS V1R2 C++

avoiding 110
AMODE 64 applications

as of z/OS V1R10 91
ANSI-aliasing rule

as of z/OS V1R2 C/C++
pointer casting 51

ANSI/ISO standard compliance
freopen() library function 39

APAR PN74931
ILC and pre-OS/390 modules 27
pre-OS/390 modules

compatibility, achieving 27
Application Support Class Library from C/C++ for MVS/ESA

earlier z/OS C/C++ source code 67
OS/390 source code 47
pre-OS/390 source code 13

ARCHITECTURE compiler option
as of z/OS V1R2 C/C++ 50
as of z/OS V1R6 C/C++

and overflow processing 51
as of z/OS V2R2 XL C/C++

default 51
ARGPARSE compiler option

as of z/OS V1R13 XL C/C++ 51
array new

as of z/OS V1R2 C/C++
avoiding syntax errors 112

pre-OS/390 source code
with user-defined global new operator 14

arrays
as of V1R9 XL C/C++

index definitions 75
ASA files

closing 39
closing and reopening 42
under CICS 116
writing to 39

assembler interlanguage calls
pre-OS/390 modules 26

assembly listings
as of z/OS V1R9 XL C/C++

width of mnemonic 76
assembly source

System Programming C 16
assistive technologies 123

atexit
changes from C/370 V2 37

B
batch processing

as of z/OS V1R2 C/C++
alternative 21
SYSLIB concatenation 21

as of z/OS V1R5
abnormal termination exit routine 32
CEEBDATX 32
CEECDATX 32

as of z/OS V1R6 94
as of z/OS V1R9 XL C/C++

and name mangling 83
pre-OS/390 modules

abnormal termination exit routines 25
CEEBDATX 25
CEECDATX 25
messages 33
MSGFILE runtime option 33

bibliography 133
binary compatibility

IPA object modules 53
binder errors

as of z/OS V1R8 XL C/C++
namespace pollution 25, 87

binder, invoking
as of z/OS V1R8 XL C/C++ 59

BookManager documents xviii
BPARM proc variable

and binder features 88
as of z/OS V1R8 XL C/C++ 88

BSD
as of z/OS V1R9 XL C++

<net/if.h> header file 84
socket definitions 84

C
C runtime library functions

as of OS/390 V2R9
pragma requirements 57

C++ class names
as of z/OS V1R3 C/C++ 26

C++ exception handling
as of z/OS V1R2 C++ 105

C++ Standard compliance
1998 support 57
as of z/OS V1R7 XL C/C++ 68

c++ utility
as of z/OS V1R6 C/C++

-g flag translation 20
C++11

as of z/OS V1R11
WARN0X compiler option 109

C++11 compiler option
as of z/OS V2R1 106

c89 utility
-g flag option 88
as of z/OS V1R6 C/C++

-g flag option 61

138 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

c89 utility (continued)
as of z/OS V1R6 C/C++ (continued)

-g flag translation 20
binding OS/390 modules 61
debug format 49

as of z/OS V1R8 XL C/C++ 59, 88
debug format

as of z/OS V1R6 C/C++ 81
feature specification

as of z/OS V1R8 XL C/C++ 88
C99 support

as of z/OS V1R7 XL C++
standard macros 70
TARGET compiler option 70

as of z/OS V1R9
IEEE754 math functions 95
runtime libraries 95

hexadecimal floating point notation 96
numeric conversion functions 97

catalogued procedures
and binder features 88
as of z/OS V1R8 XL C/C++

IMEMLIM variable 53
IPA Link 53

CBCI procedure
as of x/OS V1R5 C++

compiling OS/390 applications 57
pre-z/OS V1R5 programs 84

CBCXI procedure
as of x/OS V1R5 C++

compiling OS/390 applications 57
pre-z/OS V1R5 programs 84

CC command
syntax, supporting old, new, or both 57

CC EXEC
as of V1R2

invocation syntax changes 25
CC EXEC statement

customization of 57
CCN5193 exception

as of z/OS V1R2
avoiding 110

CCN5413 exception
as of z/OS V1R9

avoiding 109
CEEBDATX procedure

as of z/OS V1R5 32
pre-OS/390 modules 25

CEEBINT High-Level Language exit routine
with setenv() function call 61, 92

CEEBINT High-Level Language exit routines
with setenv() function call 31

CEEBLIIA library module
environment initialization 36

CEEBXITA library module
rules of precedence 25

CEECDATX procedure
pre-OS/390 modules 25

CEECOPT procedure
under CICS

as of OS/390 V2R9 116
CEEDOPT procedure

as of OS/390 V2R9
abnormal terminations of enclaves 33

CEESTART library module
initialization compatibility 35

CHECKOUT compiler option
as of z/OS V1R13 XL C/C++ 76
as of z/OS V1R6 C/C++

C support 52
CHECKOUT(CAST) compiler option

as of z/OS V1R2 C/C++ 51
CICS

abend codes and messages 116
API 117
heap residence 115
reason codes 116
standard stream support 116
stderr 117
transient data queue names 117
using HEAP option 115

CICS processing
as of z/OS V1R9

AFP registers 117
FLOAT(AFP) compiler option 117
iconv() changes and CEECCSD.COPY and
CEECCSDX.COPY files 117
Load Module Analyzer (LMA) 117

CICS statement translation options
as of z/OS V1R7 115

class definitions
as of z/OS V1R2

avoiding exceptions 110
CCN5193 exception 110
type definitions 110

as of z/OS V1R9
CCN5413 exception 109
class access checking 109

class libraries
changes between z/OS V1R5 C/C++ and z/OS V2R4 XL

C/C++
no longer supported 67

class library incompatibilities
earlier z/OS C/C++ source code 67
IO Stream Class

earlier z/OS C/C++ source code 67
load module 63
OS/390 source code 47
pre-OS/390 source code 13
source code 63

OS/390 source code 47
pre-OS/390 source code 13

CLBPRFX variable
as of x/OS V1R5 C++

compiling OS/390 applications 57
pre-z/OS V1R5 programs 84

CLISTs
changes affecting pre-OS/390 programs 32

CMDOPTS compiler option
as of z/OS V1R7 XL C/C++ 77

COBOL interlanguage calls
pre-OS/390 modules 27

code points
no longer supported

pre-OS/390 source code 16
Collection Class Library from C/C++ for MVS/ESA

earlier z/OS C/C++ source code 67
OS/390 source code 47

Index 139

Collection Class Library from C/C++ for MVS/ESA (continued)
pre-OS/390 source code 13

command-line parameters
Language Environment error handling 32
passing to a program 32

comments, using
as of z/OS V1R7 XL C/C++

when to override –qcpluscmt 82
Communications Server information

handling
as of z/OS V1R9 XL C/C++ 68

COMPAT binder option
and c89 utility 88
as of z/OS V1R8 XL C/C++ 88

COMPAT compiler option
as of z/OS V1R6 C/C++ 81

compat object model
as of z/OS V1R6 C/C++ 88

compatibility issues
bind-time

from pre-OS/390 to z/OS V1R9 23
OS/390 59

C/370 Common Library
as of z/OS V1R9 35

compile-time
earlier z/OS C/C++ programs 73

I/O operations
from pre-OS/390 39

initialization sequence interception 35
input and output

from pre-OS/390 39
IPA release-to-release binary compatibility 53
runtime

OS/390 applications 61
pre-OS/390 applications 34

source code
earlier z/OS C/C++ programs 67
OS/390 programs 47
pre-OS/390 compiler to z/OS V1R9 XL C/C++ 13

compatibility, achieving
pre-OS/390 modules

APAR PN74931 27
upward and downward 27
with earlier and later releases 27

with earlier and later releases
compatibility, achieving 27

compile-time issues
from pre-OS/390 17

compiler invocations
as of z/OS V1R6 C/C++ 81
c89 49, 81

compiler messages, listings, and return codes
ongoing changes and dependencies 17, 49, 73

compiler option
LP64 81
TARGET

as of z/OS V1R13 XL C/C++ 80
XPLINK 81

compiler options
ARCHITECTURE

as of z/OS V1R2 C/C++ 50
as of z/OS V2R2 XL C/C++ 51

CHECKOUT
C support as of z/OS V1R6 C/C++ 52

compiler options (continued)
CHECKOUT(CAST)

as of z/OS V1R2 C/C++ 51
COMPAT

as of z/OS V1R6 C/C++ 81
DBRMLIB

as of z/OS V1R8 XL C 120
z/OS V1R5 XL C — z/OS V1R8 XL C 120

DECK
alternative as of z/OS V1R2 C/C++ 50

DIGRAPH
default as of z/OS V1R2 C/C++ 52

ENUM
as of z/OS V1R2 C/C++ 52

ENUMSIZE
as of z/OS V1R2 C/C++ 18, 52
as of z/OS V1R7 XL C/C++ 18

ENUMSIZE(SMALL)
as of z/OS V1R7 XL C++ 77

FLAG 78
GENPCH

as of z/OS V1R2 C/C++ 50
GONUMBER

with LP64 78
HALT 18
HALTONMSG

as of z/OS V1R2 C/C++ 51
HWOPTS

alternative as of z/OS V1R2 C/C++ 50
as of z/OS V1R2 C/C++ 18

ILP32
as of z/OS V1R9 XL C/C++ 83
batch processing and name mangling under ILP32
83

INFO
C support as of z/OS V1R6 18, 52
C support as of z/OS V1R6 C/C++ 52

INLINE
as of z/OS V1R2 C/C++ 19, 52

IPA
as of z/OS V1R8 XL C 21, 57, 83
as of z/OS V2R1 XL C/C++ 78

LANGLVL
as of z/OS V1R7 XL C/C++ 78, 79

LANGLVL(ANSI) compiler option
as of z/OS V1R7 XL C 17, 19, 50, 53, 76, 78

LANGLVL(COMPAT)
as of z/OS V1R2 C/C++ 50

LANGLVL(EXTENDED) compiler option
as of z/OS V1R7 XL C 19, 54, 79

LANGLVL(EXTERNTEMPLATE) compiler option
as of z/OS V1R11 108

LANGLVL(SAA) compiler option
as of z/OS V1R7 XL C 17, 19, 50, 53, 76, 78

LANGLVL(SAA2) compiler option
as of z/OS V1R7 XL C 17, 19, 50, 53, 76, 78

LOCALE
as of z/OS V1R9 54
as of z/OS V1R9 XL C/C++ 79

LSEARCH
as of z/OS V1R2 C/C++ 50

NORENT
as of OS/390 V2R9 55
as of z/OS V1R7 XL C/C++ 59

140 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

compiler options (continued)
OE

as of z/OS V1R2 C/C++ 50
OMVS

alternative as of z/OS V1R2 C/C++ 50
OPTIMIZE

as of z/OS V1R5 C/C++ 55
ROCONST

default as of z/OS V1R2 C/C++ 56
ROSTRING

as of z/OS V1R2 C/C++ 55
SEARCH

as of z/OS V1R2 C/C++ 50
SOM

as of OS/390 V2R10 C/C++ 50
no longer supported 50

SQL
as of z/OS V1R8 XL C 120

SRCMSG
as of z/OS V1R2 C/C++ 50

STATICINLINE
default as of z/OS V1R2 C/C++ 56

SYSLIB
alternative as of z/OS V1R2 C/C++ 50

SYSPATH
alternative as of z/OS V1R2 C/C++ 50

TARGET
as of z/OS V1R6 C/C++ 81
as of z/OS V2R2 XL C/C++ 56

TEST
as of z/OS V1R6 C/C++ 20, 56

TUNE
as of z/OS V2R2 XL C/C++ 56

USEPCH
as of z/OS V1R2 C/C++ 50

USERLIB
alternative as of z/OS V1R2 C/C++ 50

USERPATH
alternative as of z/OS V1R2 C/C++ 50

compiler options for compatibility with previous compilers
84
compiler options, no longer supported

as of z/OS V1R2 C/C++ 50
compiler options, specifying in JCL 21
compiler otions, no longer supported

pre-OS/390 17
compiler substitution variables

as of z/OS V1R10 73
compiler-time issues

from C/370 V2 17
concatenation of libraries

environment initialization 36
conflicts between options and pragmas

as of z/OS V1R7 XL C/C++ 77
contact

z/OS 123
ctest() function

relinking C/370 modules 26
ctime() 36
customization

as of z/OS V1R6
Language Environment services 94

cv-qualification
as of z/OS V1R2 C++ 105

D
data conversions

as of z/OS V1R6 C/C++
and ARCHITECTURE level 51

data set names 56
data type incompatibilities

pre-OS/390 source code 15
data types

as of z/OS V1R6 XL C
long long 54

Database Access Class Library
as of OS/390 V1R4

removal of utility 63
DB2

Database Access Class Library utility 119
requesting DB2 services

z/OS V1R5 XL C — z/OS V1R8 XL C 119
DB2 services, requesting

using SQL compiler option 119
DBRMLIB compiler option

z/OS V1R5 XL C — z/OS V1R8 XL C 120
ddnames

SYSERR 33
SYSPRINT 33
SYSTERM 33

debug format
as of z/OS V1R6 C/C++

binding OS/390 modules 61
c89 utility 49
determining 56

c89 utility 81
Debug Tool

relinking C/370 modules 26
debugging issues

relinking C/370 modules 26
decimal floating-point (DFP)

as of z/OS V1R9 XL C++
size modifiers 69, 92

decimal overflow exceptions
pre-OS/390 CICS modules 37

DECK compiler option
alternative as of z/OS V1R2 C/C++ 17
as of z/OS V1R2 C/C++

alternative 50
default daylight saving time

as of z/OS V1R9 93, 94
destruction of statically initialized objects before and after
ISO/IEC 14882:2003(E) compliance 103
DIGRAPH compiler option

as of z/OS V1R2 C/C++
default 52

DSAUSER compiler option
as of z/OS V1R13 XL C/C++ 77

DSECT header files
packed structures and unions 15

dump services
as of C/C++ for MVS/ESA V3

dump generation or suppression 33
dumps

generating automatically
as of z/OS V1R5 32

Language Environment format
as of z/OS V1R5 32

Index 141

DWARF debug format
-g flag

as of z/OS V1R6 C/C++ 81
dynamic binding

declaring and calling virtual functions
as of z/OS V1R6 C/C++ 71

dynamic code 35

E
EDCXSTRX

and dynamic C library functions in SPC applications 16
EDCXV 16
EEC default currency

as of z/OS V1R6 94
enclaves

as of OS/390 V2R9
abnormal terminations 33

enumeration types
as of z/OS V1R7 XL C/C++

controlling size of 52
controlling size of

as of z/OS V1R7 XL C/C++ 18
as of z/OS V1R7 XL C++ 77

enumerations
as of z/OS V1R7 XL C++ 77
differences between UNIX System Laboratories and
Standard C++ I/O Stream libraries 63

ENUMSIZE compiler option
as of z/OS V1R2 C/C++ 18, 52
as of z/OS V1R7 XL C/C++ 18

ENUMSIZE(SMALL) compiler option
as of z/OS V1R7 XL C++ 77

ENVAR("_EDC_COMPAT=32767") runtime option 31, 61, 92
environment initialization 36
environment variables

_EDC_COMPAT 41
as of z/OS V1R5 C/C++

POSIX compliance 70
putenv() 70
storage of 70

as of z/OS V1R6 C/C++
_DEBUG_FORMAT 20, 49
-g flag translation 20, 49
c89/c++ 20
DWARF 49

internationalization issues 36
POSIX compliance 36

error messages
as of z/OS V1R8 XL C/C++

binder 25, 87
as of z/OS V1R9 XL C++

name lookup exceptions 75
templates 75

Language Environment services
redirecing 33

namespace pollution
as of z/OS V1R8 XL C/C++ 25, 87

templates 75
errors

as of z/OS V1R7 XL C++
non-standard long long macros 70

due to compiler changes 109
errors, migration

errors, migration (continued)
macro redefinitions

as of z/OS V1R7 XL C 17, 19, 50, 53, 76, 78
Unable to open DBRM file

as of z/OS V1R8 XL C 120
escape sequence encoding

as of z/OS V1R11 74
Euro

as of z/OS V1R6 94
exception handling

as of z/OS V1R2
access checking (C++ only) 109
class type definitions 109

as of z/OS V1R2 C++
ambiguous overloads 110

as of z/OS V1R9
CCN5413 exception 109

changes from C/370 V2
return codes 37
SIGINT 37
SIGTERM 37
SIGUSR1 37
SIGUSR2 37

differences between C/370 and Language Environment
library return codes and messages 31

user-defined conversions 111
exceptions

as of z/OS V1R2
avoiding exceptions 110
CCN5193 exception 110
type definitions 110

EXEC statements
CC 25
CC command 57
changes affecting pre-OS/390 programs 32
customization of 57

existing applications, migrating to z/OS XL C
From C/370 V2 11

external references
as of z/OS V1R3 C/C++ 26

external variable names
as of z/OS V1R3 C/C++ 26

F
feature test macros

and system header files
as of z/OS V1R9 XL C++ 69

feature testing
as of z/OS V1R11 XL C++ 84
as of z/OS V1R7 XL C++ 69, 84
as of z/OS V1R9 XL C++ 84

feedback xix
fetched main programs

pre-OS/390 source code 14
fflush() function 41
fgetpos() function 41
fixes

pre-OS/390 modules
APAR PN74931 27

z/OS V1R5 XL C — z/OS V1R8 XL C
DBRMLIB option 119

FLAG compiler option
as of z/OS V1R13 XL C/C++ 78

142 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

flags
differences between UNIX System Laboratories and
Standard C++ I/O Stream libraries 63

fldata() function
changes in return values 43

FLOAT(AFP) compiler option
CICS processing

as of z/OS V1R9 117
floating-point support

runtime libraries 96
for loops

as of z/OS V1R7 XL C/C++
unrolling 71

scoping
as of z/OS V1R2 C++ 104

format control flags
differences between UNIX System Laboratories and
Standard C++ I/O Stream libraries 63

Fortran interlanguage calls
as of Language Environment V1R5 26

freopen() library function
ANSI/ISO standard 39

friend declaration
as of z/OS V1R11

extendedfriend 108
friend declarations in class member lists and Standard C++

compliance
as of z/OS V1R2 C++ 105

friend declarations, visibility of
as of z/OS V1R2 C++

effect on friend declarations 105
fseek() function 41
function return type

pre-OS/390 source code 14

G
GENASM compiler option

as of z/OS V1R13 XL C/C++ 78
GENPCH compiler option

as of z/OS V1R2 C/C++ 50
getnameinfo() function

as of z/OS V1R9 XL C/C++
scope information 68

global new operator, user-defined
pre-OS/390 source code

example 14
GONUMBER compiler option

as of z/OS V1R8 XL C/C++
with LP64 78

H
HALT compiler option 18
HALTONMSG compiler option

as of z/OS V1R2 C/C++ 51
header files

and feature test macros
as of z/OS V1R9 XL C++ 69

as of z/OS V1R7 XL C++
_OPEN_SYS_SOCK_IPV6 macro 69
exposing new definitions 69
Language Enviroment 69, 84

header files (continued)
as of z/OS V1R9

time.h 93
as of z/OS V1R9 XL C++

_Ieee754.h 69
IEEE 754 interface declarations 69
Language Enviroment 84

DSECT
migration from pre-OS/390 15

HEAP runtime option
default size 34
parameters 34
with CICS 115

HEAPPOOLS runtime option
as of z/OS V1R10 91

hexadecimal floating point notation
C99 support 96

HFS files, support of 57
HWOPTS compiler option

as of z/OS V1R2 C/C++
alternative 50

I
IBM data set names 56
IBM object model

as of z/OS V1R6 C/C++ 88
IBM Open Class Library

-OS/390 source code 47
earlier z/OS C/C++ source code 67
pre-OS/390 source code 13
removal of runtime support 63

IBMBLIIA library module
environment initialization 36

IBMBXITA library module
rules of precedence 25

iconv() changes and CICS processing
as of z/OS V1R9 117

IEEE 754 interface declarations
as of z/OS V1R9 XL C++

namespace pollution 69
IEEE754 math functions

as of z/OS V1R9
version specification 95

IEFUSI exit routine
as of z/OS V1R8 XL C/C++

MEMLIMIT value 83
MEMLIMITvalue 53

IEW2456E error condition
binding earlier z/OS C/C++ programs

handling 87
binding pre-OS/390 programs

handling 25
ILP32 compiler option

as of z/OS V1R9 XL C/C++
batch processing and name mangling 83

IMEMLIM variable
as of z/OS V1R8 XL C/C++

cataloged procedures 83
MEMLIMIT system parameter 83
to override the MEMLIMIT default 53

implicit integer types
as of z/OS V1R2 C++ 104

include files, finding 18

Index 143

incompatibilities
between Open Class and Standard /C++ libraries 63

INFO compiler option
as of z/OS V1R6 C/C++

C support 52
C support as of z/OS V1R6 18
default as of z/OS V1R2 C/C++ 18

initialization compatibility issues
C/370 Common Library

as of z/OS V1R9 35
initialization schemes

CEESTART and IBMBLIIA modules 35
INLINE compiler option

as of z/OS V1R2 C/C++
defaults 52

inlining threshold
as of z/OS V1R2 C/C++ 52

input and output
as of z/OS V1R9 XL C++

impact of DFP size modifiers 69
impact of DFP size modifiers on fprintf/fscanf
results 92
source code modifications to fprintf and fscanf
function arguments 69

ASA files
closing and reopening 42
closing files 39
writing to files 39

closing and reopening files
ASA files, opening and closing 42

closing files
ASA files 39

compatibility issues 39
file I/O changes 39
fldata() function 43
ftell() encoding 41
opening files 39
repositioning within files 41
terminal I/O 43
VSAM I/O 43
writing to files

ASA files 39
other considerations 39

interlanguage calls
assembler 27
PL/I 27

interlanguage calls (ILC)
as of Language Environment V1R5 26
as of z/OS V1R6 C++

between C and C++ program modules using
#pragma pack(2) 88

pre-OS/390 binder error 37
pre-OS/390 modules 26, 27
pre-OS/390 source code 15
program mask manipulations

pre-OS/390 source code 15
relinking pre-OS/390 modules 26

internal timing algorithm
as of z/OS V1R8 93

internationalization
migration issues 94

internationalization incompatibilities
no longer supported

pre-OS/390 source code 16

internationalization incompatibilities (continued)
pre-OS/390 source code 16

internationalization issues
time zones 36

invocation of XL C/C++ compiler
as of z/OS V1R6 C/C++ 81

IPA compiler option
as of z/OS V1R9 XL C/C++

IPA link step 57
macro redefinition 57
region size 57
very large applications 57

as of z/OS V2R1 XL C/C++ 78
binary compatibility issues 53
macro redefinition

as of z/OS V1R8 XL C 21, 83
IPA Link step

as of z/OS V1R9 XL C/C++
very large applications 57

very large applications
as of z/OS V1R8 XL C 21, 83

IPA(LINK) compiler option
as of z/OS V1R8 XL C/C++

64-bit memory 83
link step defaults 52

ISAINC runtime option
Language Environment equivalent 33

ISASIZE runtime option
Language Environment equivalent 33

ISASIZE/ISAINC with #pragma runopts
pre-OS/390 source code 13

ISO standard C++ compliance
determining level supported by compiler 99

ISO Standard C++ compliance
recommended approaches for migration objectives 101

ISO/IEC 14882:2003(E) compliance
effect on cv-qualification 105
statically initialized objects, destruction of 103

J
JCL procedures

arguments that contain a slash 32
as of C/C++ for MVS/ESA V3

dump generation or suppression 33
as of x/OS V1R5 C++

CBCI 57
CBXI 57
CLBPRFX variable 57

as of z/OS V1R2 C/C++ 21
as of z/OS V1R5

CEEBDATX 32
as of z/OS V1R5 C/C++ 21
as of z/OS V1R7 XL C/C++

bind step 59
as of z/OS V1R8 XL C/C++

64-bit virtual memory 53
setting MEMLIMIT value 53

as of z/OS V1R9 XL C/C++
default region size 82
name mangling 83
user-defined conversion tables 83

CBCC 21
CBCCL 21

144 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

JCL procedures (continued)
CBCCLG 21
CBCI 21
CBCXI 21
CC EXEC statement 57
CEEBDATX 25
CEECDATX 25, 115
CEECOPT

as of OS/390 V2R9 116
CEEDOPT

abnormal terminations of enclaves 33
changes affecting pre-OS/390 programs 32
CLBPRFX variable 21
customizing for migrations from OS/390 57
CXX parameter 21
differences between C/370 and AD/Cycle C/370 V1R2

library return codes and messages 31
GO step 33
interlanguage calls and compiler options 27
obsolete C/370 runtime options 33
pre-z/OS V1R5 C/C++ modifications 84
SYSLIB DD cards to remove

as of z/OS V1R2 C/C++ 21
to compile very large applications

as of z/OS V1R8 XL C 21, 57, 83
user-defined for C++ 21

K
keyboard

navigation 123
PF keys 123
shortcut keys 123

L
LANGLVL compiler option

and macro redefinitions
as of z/OS V1R7 XL C/C++ 78, 79

LANGLVL(ANSI) compiler option
and Standard C++ compliance objectives 101
as of z/OS V1R7 XL C

macro redefinition 50, 53
macro redefinition

as of z/OS V1R7 XL C 17, 19, 76, 78
LANGLVL(AUTOTYPEDEDUCTION) compiler option

as of z/OS V1R12 106
LANGLVL(C1XNORETURN) compiler option

as of z/OS V2R1 107
LANGLVL(C99LONGLONG) compiler option

as of z/OS V1R12 107
LANGLVL(C99PREPROCESSOR) compiler option

as of z/OS V1R12 107
LANGLVL(COMPAT) compiler option

alternative as of z/OS V1R2 C/C++ 17
as of z/OS V1R2 C/C++ 50

LANGLVL(COMPAT92) compiler option
and Standard C++ compliance objectives 101

LANGLVL(CONSTEXPR) compiler option
as of z/OS V2R1 107

LANGLVL(DECLTYPE) compiler option
as of z/OS V1R12 107

LANGLVL(DEFAULTANDDELETE) compiler option

LANGLVL(DEFAULTANDDELETE) compiler option (continued)
as of z/OS V2R1 107

LANGLVL(DELEGATINGCTORS) compiler option
as of z/OS V1R12 107

LANGLVL(EXPLICITCONVERSIONOPERATORS) compiler
option

as of z/OS V2R1 108
LANGLVL(EXTC1X) compiler option

as of z/OS V2R1 79
LANGLVL(EXTENDED) compiler option

and Standard C++ compliance objectives 101
as of z/OS V1R7 XL C

macro redefinition 54
macro redefinition

as of z/OS V1R7 XL C 19, 79
LANGLVL(EXTENDED0X) compiler option

as of z/OS V1R11 79
LANGLVL(EXTENDEDFRIEND) compiler option 108
LANGLVL(EXTENDEDINTEGERSAFE) compiler option

as of z/OS V1R12 108
LANGLVL(EXTERNTEMPLATE) compiler option

as of z/OS V1R11
macro redefinition 108

LANGLVL(IMPLICITINT) compiler option 104
LANGLVL(INLINENAMESPACE) compiler option

as of z/OS V1R12 108
LANGLVL(LONGLONG) compiler option

as of z/OS V1R7 XL C++ 70
LANGLVL(NOANSIFOR) compiler option

scoping for-loop initializer declarations
as of z/OS V1R2 C++ 104

LANGLVL(OLDFRIEND) compiler option
as of z/OS V1R2 C++

effect on friend declarations 105
LANGLVL(OLDMATH) compiler option

as of z/OS V1R2 C++ 110
LANGLVL(REFERENCECOLLAPSING) compiler option

as of z/OS V2R1 108
LANGLVL(RIGHTANGLEBRACKET) compiler option

as of z/OS V2R1 109
LANGLVL(RVALUEREFERENCES) compiler option

as of z/OS V2R1 109
LANGLVL(SAA) compiler option

as of z/OS V1R7 XL C
macro redefinition 50, 53

macro redefinition
as of z/OS V1R7 XL C 17, 19, 76, 78

LANGLVL(SAA2) compiler option
as of z/OS V1R7 XL C

macro redefinition 50, 53
macro redefinition

as of z/OS V1R7 XL C 17, 19, 76, 78
LANGLVL(SCOPEDENUM) compiler option

as of z/OS V2R1 109
LANGLVL(STATIC_ASSERT) compiler option

as of z/OS V1R12 109
LANGLVL(STRICT98) compiler option

and Standard C++ compliance objectives 101
LANGLVL(VARIADICTEMPLATES) compiler option

as of z/OS V1R12 109
Language Enviroment

as of z/OS V1R7 XL C++ 69
header files

as of z/OS V1R7 XL C++ 69

Index 145

Language Enviroment (continued)
header files (continued)

netinet/in.h 69
Language Environment runtime libraries

as of z/OS V1R7 XL C++
header files 84

as of z/OS V1R9 XL C++
header files 84

pre-OS/390 modules
packaging 27

Language Environment services
as of OS/390 V2R9

abnormal enclave terminations 33
abnormal terminations 33
enclaves 33

as of z/OS V1R2 C/C++
arguments that contain a slash 32
data set names 32
default heap allocatons 34
error messages 31, 32
error parameter passing 32
HEAP parameter specification 34
passing runtime options 32, 33
return codes 31
STACK defaults 34
TRAP restrictions 33

as of z/OS V1R5 C/C++
abnormal terminations 32
batch jobs 32
customizing procedures 84
data set names 32
modifying JCL 84
specifying message language 32

as of z/OS V1R6
customization 94
LOCALDEF utilities 94

as of z/OS V1R7 XL C/C++
abend codes and messages with CICS 116
dumps 116

as of z/OS V1R9
default daylight saving time 93
default daylight saving time, retaining previous 94

C/370 CICS modules
initialization compatibility issues 35
realloc() 38
unexpected SIGFPE exceptions 37

CICS modules
writing to pre-OS/390 files 39

customization issues
OS/390 migrations 62

equivalents for C/370 V2 runtime options 33
iconv() changes and CICS processing

as of z/OS V1R9 117
initialization 35
interlanguage calls (ILC) 26
OS/390 migration issues

customization 62
output handling under CICS 117
pre-OS/390 CICS modules

coexistence considerations 37
decimal overflow exceptions 37
exception handling 37
initialization schemes 35
initializing 36

Language Environment services (continued)
pre-OS/390 CICS modules (continued)

input and output compatibility issues 39
pre-OS/390 CICS programs

abnormal terminations 115
dumps 115
heap residence 115

pre-OS/390 modules
APAR PN74931 27
converting modules to use Language Environment
services 29
directing error messages 33

pre-OS/390 programs
retaining runtime beharior 31
runtime messages 31
STACK parameters 34

record handling under CICS 116
transient data queue names under CICS 117

language for compiler messages, specifying 49
language libraries

pre-OS/390 modules 27
LANGUAGE runtime option

Language Environment equivalent 33
LANGUAGE with #pragma runopts

pre-OS/390 source code 13
LC_MONETARY information

as of z/OS V1R6 94
library file searches

based on name and type
as of z/OS V1R2 C/C++ 21

library functions
ctest() 26
ctime() 36
fflush() 41
fgetpos() 41
fseek() 41
librel 23
localtime() 36
mktime() 36
pthread_yield()

as of z/OS V1R8 XL C/C++ 68
pthread_yield() function

as of z/OS V1R9 XL C++ 68
putenv()

as of z/OS V1R5 C/C++ 70, 93
realloc()

migration from pre-OS/390 38
pre-OS/390 source code modification 38

sched_yield()
as of z/OS V1R8 XL C/C++ 68

ungetc() 41
library release

determining 23
link step

as of z/OS V1R8 XL C/C++
IPA(LINK) defaults 52

IPA binary compatibility 53
linkage editor control statements

pre-OS/390 modules
calls to COBOL routines 27

linkage issues
as of V1R10 74
as of V1R9 with PTF UK31348 74

listings

146 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

listings (continued)
as of z/OS V1R6 C/C++

binding OS/390 modules 61
formats 61

binding OS/390 modules 88
format changes 17, 49, 73
formats 88

Load Module Analyzer (LMA)
CICS processing

as of z/OS V1R9 117
load modules

converting pre-OS/390 programs 29
LOCALDEF utilities

as of z/OS V1R6 94
LOCALE compiler option

and macro redefinitions
as of z/OS V1R9 XL C/C++ 79

locale name
as of z/OS V1R9

__LOCALE__ macro 54
LOCALE compiler option 54

localtime() 36
long long data type

as of z/OS V1R7 XL C++
C99 standard macros 70

long long macros
as of z/OS V1R7 XL C++

numeric conversion functions 70
LP64 compiler option

as of z/OS V1R6 C/C++ 81
as of z/OS V1R8 XL C/C++

and GONUMBER compiler option 78
LP64 environment restriction

as of z/OS V1R6 C/C++
with _DEBUG_FORMAT environment variable 56

LSEARCH compiler option
as of z/OS V1R2 C/C++ 50

M
M compiler option

as of z/OS V1R11 80
as of z/OS V2R1 54

macors
for LANGLVL(EXTENDED)

z/OS V1R7 XL C 19
macro definition check

SQL coprocessor-based compilations
as of z/OS V1R10 XL C/C++ 120

macro redefinitions
as of z/OS V1R7 XL C/C++

under LANGLVL(ANSI), LANGLVL(SAA), or
LANGLVL(SAAL2) 78
under LANGLVL(EXTENDED) 79

macro undefinition and redefinition
SQL coprocessor-based compilations

as of z/OS V1R10 XL C/C++ 120
macros

_OPEN_SYS_SOCK_IPV6
as of z/OS V1R7 XL C++ 69

as of z/OS V1R11
__IBMCPP_EXTENDED_FRIEND 108

as of z/OS V1R6 XL C
_LONG_LONG 54

macros (continued)
as of z/OS V1R9 XL C/C++

__LOCALE__ macro 79
for certain language levels

as of z/OS V1R7 XL C 17, 19, 50, 53, 76, 78
for LANGLVL(EXTENDED)

V1R7 XL C 79
z/OS V1R7 XL C 54

for LANGLVL(EXTERNTEMPLATE)
z/OS V1R11 108

macros, standard
as of z/OS V1R7 XL C++

C99 support of 70
TARGET compiler option 70

main programs, fetched
pre-OS/390 source code 14

mainframe
education xix

maintenance level, determining 119
mangled names

as of z/OS V1R3 C/C++ 26
math functions

as of z/OS V1R9
IEEE754 95

MEMLIMIT default value
as of z/OS V1R8 XL C/C++

64-bit memory 83
64-bit virtual memory 53
overriding 53, 83
setting 53, 83

memory requirements
as of z/OS V1R8 XL C/C++ 21
as of z/OS V1R9 XL C/C++

IPA link step 57
IPA link step

as of z/OS V1R8 XL C/C++ 83
message data sets

NATLANG runtime option 32, 49
messages

CICS 116
CICS reason codes 116
contents 31
debug format

as of z/OS V1R6 C/C++ 49, 81
differences between C/370 and AD/Cycle C/370 V1R2
31
differences between C/370 and Language Environment
31
differences between pre-OS/390 and Language
Environment runtime messages 31
macro redefinitions

as of z/OS V1R11 108
as of z/OS V1R7 XL C 17, 19, 50, 53, 54, 76, 78, 79

MSGFILE runtime option 33
non-DLL compilations

as of z/OS V1R6 C/C++ 81
perror() 32
prefixes 31
specifying the national language for 32, 49
strerror() 32
Unable to open DBRM file

as of z/OS V1R8 XL C 120
migration objectives and recommended approaches 101
mktime() 36

Index 147

Model Tool support
as of OS/390 V2R10 C/C++ 58

MSGFILE runtime option
pre-OS/390 modules 33

multithreaded applications
binding OS/390 modules 59

MVS batch interface
as of z/OS V1R6 94

MVS/ESA V3
dumps 33

N
name lookups

as of z/OS V1R10 XL C++ 103
name mangling

as of z/OS V1R3 C/C++ 26
as of z/OS V1R9 XL C/C++

and batch processing 83
namespace pollution

as of z/OS V1R9 XL C++
IEEE 754 interface declarations 69
math.h 69

SQL coprocessor-based compilations
as of z/OS V1R10 119

namespace pollution error
as of z/OS V1R8 XL C/C++

handling 25, 87
namespace pollution errors

SQL coprocessor-based compilations
handling, as of z/OS V1R10 119

namespaces
as of z/OS V1R10

avoiding pollution of 119
as of z/OS V1R9 XL C++

<net/if.h> header file 84
avoiding pollution of 69

XPG 4.2 84
national language for runtime environment, specifying 32
NATLANG runtime option

C/370 equivalent 33
message data sets 49

navigation
keyboard 123

new
pre-OS/390 source code

array format 14
new, array version

as of z/OS V1R2 C/C++
avoiding syntax errors 112

pre-OS/390 source code 14
non-DLL compilations

as of z/OS V1R6 C/C++ 81
NONIPSTACK runtime option

Language Environment equivalent 33
NORENT compiler option

as of OS/390 V2R9
variables 55

NOSPIE runtime option
running pre-OS/390 programs 33

NOSTAE runtime option
running pre-OS/390 programs 33

NULL assignments
pre-OS/390 source code 14

numeric conversion functions
as of z/OS V1R7 XL C++

long long macros 70
C99 support 97

O
object models, supported

as of z/OS V1R6 C/C++ 88
OE compiler option

as of z/OS V1R2 C/C++ 50
OMVS compiler option

alternative as of z/OS V1R2 C/C++ 18
as of z/OS V1R2 C/C++

alternative 50
optimization

as of OS/390 V2R6 C/C++ 49
OPTIMIZE compiler option

as of z/OS V1R5 C/C++
OPT(3) 55

OS/390 behavior
retaining 61

OS/390 migration issues
Language Environment customization 62

OS/390 migrations
JCL procedures 57

OS/390 modules
as of z/OS V1R7 XL C/C++

bind step 59
OS/390 programs

improving performance 57
OS/390 V1R4

Database Access Class Library utility
removal of support 63

OS/390 V2R10
removal of Model Tool support 58
ROSTRING compiler option 56
System Object Model (SOM)

removal of support 63
OS/390 V2R6

optimization level mapping and listing content 49
OS/390 V2R9

#pragma leaves 57
#pragma reachable 57
#pragma variable 55
enclaves

abnormal terminations 33
NORENT compiler option 55
variables 55

overflow processing
and ARCH option 47
as of z/OS V1R6 C/C++

and ARCHITECTURE level 51
and data conversions 51

OS/390 source code
examples 47

overload ambiguities
as of z/OS V1R2 C++

avoiding 110
overloads of standard math functions

as of z/OS V1R2 C++
avoiding exceptions 110

148 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

P
packed structures and unions

assignment restrictions
migration from pre-OS/390 15

DSECT header files
migration from pre-OS/390 15

PDF documents xviii
PDS 39
PDSE 39
performance improvements

as of z/OS V1R9
IEEE754 math functions 95

performance, improving
as of z/OS V1R9 XL C/C++

very large applications 57
very large applications

as of z/OS V1R8 XL C 21, 83
when recompiling OS/390 programs 57

perror() 32
PL/1 interlanguage calls

pre-OS/390 modules 26
PL/I interlanguage calls 27
pointer casting

as of z/OS V1R2 C/C++
anti-aliasing rule 51

pointer incompatibilities
pre-OS/390 source code 14

portability
to or from AIX

as of z/OS V1R6 C/C++ 81
POSIX compliance

as of z/OS V1R5
changes to putenv() 93

as of z/OS V1R5 C/C++
putenv() function 70

POSIX compliance 61
retaining OS/390 behavior 61

potential linkage issues
as of V1R10 74
as of V1R9 with PTF UK31348 74

pragma
enum

as of z/OS V1R2 C/C++ 52
pack

DSECT header files 15
runopts

pre-OS/390 source code 13
variable

as of OS/390 V2R10 C/C++ 56
pragmas

as of z/OS V1R2 XL C++
pack(2) 71

as of z/OS V1R7 XL C/C++
variable 59

binding OS/390 modules 59
changes in behavior of variables 59
leaves

as of OS/390 V2R9 57
reachable

as of OS/390 V2R9 57
runopts 33

pre-OS/390 applications
runtime

pre-OS/390 applications (continued)
runtime (continued)

compatibility issues 34
pre-OS/390 source code

NULL assignments 14
pointer incompatibilities 14

program masks
CICS applications

pre-OS/390 source code 15
pre-OS/390 source code 15
System Programming C

pre-OS/390 source code 15
pselect() interface

as of z/OS V1R11 XL C++ 84
PSW mask 15
putenv()

as of z/OS V1R5
and POSIX compliance 93

putenv() function
as of z/OS V1R5 C/C++ 70

R
realloc() function

migration from pre-OS/390 38
pre-OS/390 source code modification 38

recommended approaches for migration objectives 101
reentrancy

as of OS/390 V2R10 C/C++
#pragma variable 56

as of OS/390 V2R9
#pragma variable 55

as of z/OS V1R7 XL C/C++
binding OS/390 modules 59

region size
as of z/OS V1R9 XL C/C++

default 57
release changes and migration issues 3
relink requirements

ctest() 26
REPORT runtime option

Language Environment equivalent 33
REPORT with #pragma runopts

pre-OS/390 source code 13
resolution of conflicts between options and pragmas

as of z/OS V1R7 XL C/C++ 77
resource allocation

and memory management
pre-OS/390 source code 37

return codes
control of processing

as of z/OS V1R10 82
specifying maximum acceptable

as of z/OS V1R10 82
return codes differences

between C/370 and Language Environment 31
ROCONST compiler option

default as of z/OS V1R2 C/C++ 56
ROSTRING compiler option

as of z/OS V1R2 C/C++ 55
RPTSTG runtime option

C/370 equivalent 33
rules of precedence

user exits 25

Index 149

runtime behavior, OS/390
retaining for the greatest number of items 61

runtime behavior, pre-OS/390
retaining for the greatest number of items 31

runtime behavior, previous
daylight saving time 93
internal timing algorithm 93
retaining earlier IEEE754 math functions 93
retaining for the greatest number of items 92

runtime compatibility issues
pre-OS/390 applications 34

runtime libraries
C/370, under CICS 115
C99 standard

floating-point notation 96
floating-point special values 97

Runtime Library Extensions
earlier z/OS C/C++ source code 67
OS/390 source code 47
pre-OS/390 source code 13

runtime options
ABTERMENC

abnormal terminations of enclaves 33
C/370 V2 compiler to z/OS V1R9 C compiler 31
ending options list 33
HEAP

C/370 V2 compiler to z/OS V1R9 C compiler 34
ISAINC

Language Environment equivalent 33
ISASIZE

Language Environment equivalent 33
LANGUAGE

Language Environment equivalent 33
MSGFILE 33
passing to program 33
pre-OS/390 31
REPORT

Language Environment equivalent 33
slash (/) 33
SPIE

Language Environment equivalent 33
SPIE|NOSPIE 33
STAE

Language Environment equivalent 33
STAE|NOSTAE 33
TRAP 33

runtime options, specifying in JCL 21

S
scanf()

as of z/OS V1R9 XL C++
impact of DFP size modifiers, source code
modifications 69

SCEERUN library module
environment initialization 36

SCLBH data sets 21
scope information

handling
as of z/OS V1R9 XL C/C++ 68

SEARCH compiler option
as of z/OS V1R2 C/C++ 50

sending to IBM
reader comments xix

setlocale() function
as of z/OS V1R6 94

shortcut keys 123
SIBMLINK library module

environment initialization 36
SIGFPE exceptions

CICS applications
pre-OS/390 source code 15

pre-OS/390 binder error 37
pre-OS/390 source code 15
System Programming C

pre-OS/390 source code 15
SIGINT exception

changes from C/370 V2 37
SIGTERM exception

changes from C/370 V2 37
SIGUSR1 exception

changes from C/370 V2 37
SIGUSR2 exception

changes from C/370 V2 37
sizeof operator

pre-OS/390 source code 14
SOM compiler option

as of OS/390 V2R10
removal of SOM support 63

source code
pre-OS/390 compiler to z/OS V1R9 XL C/C++ 13

source code incompatibilities
with earlier releases of the z/OS C/C++ compiler 67
with OS/390 programs 47

source code modifications
as of z/OS V1R9 XL C++

impact of DFP size modifiers 69
fprintf and fscanf strings 70

SPIE runtime option
Language Environment equivalent 33
running pre-OS/390 programs 33

SPIE with #pragma runopts
pre-OS/390 source code 13

SQL
requesting DB2 services

z/OS V1R5 XL C — z/OS V1R8 XL C 119
SQL compiler option

as of z/OS V1R10 XL C 119
as of z/OS V1R9 XL C 119

SQL coprocessor-based compilations
as of z/OS V1R10

namespace pollution 119
SRCMSG compiler option

as of z/OS V1R2 C/C++ 18, 50
STACK runtime option

as of z/OS V1R2 C/C++ 34
C/370 equivalent 33
parameters 34
STACK defaults 34

STAE runtime option
Language Environment equivalent 33
running pre-OS/390 programs 33

STAE/SPIE with #pragma runopts
pre-OS/390 source code 13

Standard C++ compliance
array new with user-defined global new operator

pre-OS/390 14
as of z/OS V1R2

150 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

Standard C++ compliance (continued)
as of z/OS V1R2 (continued)

access checking 109
access checking (C++ only) 109
CCN5193 exception 110
class type definitions 109
exception handling 109
exceptions 109
type definitions 109, 110

as of z/OS V1R2 C/C++
syntax error with array new 112

as of z/OS V1R2 C++
ambiguous overloads 110
effect on friend declarations 105

as of z/OS V1R7 XL C++ 68
as of z/OS V1R9

CCN5413 exception 109
class access checking 109

as of z/OS V1R9 XL C++ 68
effect on exception handling 105
implicit integer types

as of z/OS V1R2 C++ 104
scoping for-loop initializer declarations

as of z/OS V1R2 C++ 104
statically initialized objects, destruction of 103
user-defined conversions 111

Standard C++ compliance and friend declarations in class
member lists

as of z/OS V1R2 C++ 105
Standard C++ I/O Stream Library

and UNIX System Laboratories Complex Mathematics
Library 67

standard math functions
as of z/OS V1R2 C++

ambiguous overloads 110
standard stream support

under CICS 116
static code 35
statically initialized objects, destruction of 103
STATICINLINE compiler option

default as of z/OS V1R2 C/C++ 56
stderr

output handling under CICS 117
strerror() 32
symbolic names

resolution as of V1R9 75
SYSERR ddname

pre-OS/390 modules 33
SYSLIB compiler option

alternative as of z/OS V1R2 C/C++ 18
as of z/OS V1R2 C/C++

alternative 50
SYSMSGS ddname 32
SYSPATH compiler option

alternative as of z/OS V1R2 C/C++ 18
as of z/OS V1R2 C/C++

alternative 50
SYSPRINT ddname

pre-OS/390 modules 33
system header files

type declarations
as of z/OS V1R7 XL C++ 77

System Object Model
as of OS/390 V2R10 C/C++ 50

System Object Model (continued)
no longer supported 50

System Object Model (SOM)
as of OS/390 V2R10

removal of SOM support 63
System Programming C (SPC) facility

applications built with EDCXSTRX 16
CEEEV003 16
EDCXV 16
source changes 16

SYSTERM ddname
pre-OS/390 modules 33

T
TARGET compiler option

and binder features 88
as of z/OS V1R6 C/C++ 81
as of z/OS V1R7 XL C++

C99 standard macros 70
as of z/OS V1R8 XL C/C++ 88
as of z/OS V2R2 XL C/C++ 56
earliest release that can be targeted

as of z/OS V1R13 XL C/C++ 80
targeting an earlier release

as of z/OS V1R13 XL C/C++ 80
as of z/OS V1R8 XL C/C++ 88

technical support xix
TEMPLATEDEPTH compiler option

as of z/OS V1R13 XL C/C++ 80
templates

as of z/OS V1R9 XL C++
name lookup exceptions 75

terminate__3stdFv binder error message 87
TEST compiler option

as of z/OS V1R6 C/C++ 20, 56
PATH suboption

as of z/OS V1R6 C/C++ 20
thread processing

as of z/OS V1R8 XL C/C++
processor release 68

processor release
as of z/OS V1R8 93

time zone issues 36
time.h header file

as of z/OS V1R9
localtime() function 93

TRAP runtime option
C/370 equivalent 33
running pre-OS/390 programs 33

TSO localedef utility interface
as of z/OS V1R6 94

TUNE compiler option
as of z/OS V2R2 XL C/C++

default 56
twobyte packed data alignment

as of z/OS V1R2 XL C++
unexpected C++ output 71

type definitions
as of z/OS V1R2

avoiding errors 109
typographical conventions xi

Index 151

U
ulimit command

as of z/OS V1R8 XL C/C++
MEMLIMIT system parameter 53, 83

unexpected results
as of z/OS V1R9 XL C++

impact of DFP size modifiers on fprintf/fscanf
results 92

ungetc()
effect upon behavior of fflush() 41
effect upon behavior of fgetpos() 41
effect upon behavior of fseek() 41

unhandled conditions
changes from C/370 V2 37

Unicode character translation
and #pragma comment strings

as of z/OS V1R10 XL C/C++ 51
UNIX System Laboratories

and Standard C++ I/O Stream libraries 63
UNIX System Laboratories Complex Mathematics Library

and Standard C++ I/O Stream Library 67
earlier z/OS C/C++ source code 67
OS/390 source code 47, 63
pre-OS/390 source code 13

UNIX System Laboratories I/O Stream Library
earlier z/OS C/C++ source code 67
OS/390 source code 47, 63
pre-OS/390 source code 13

UNIX System Services files, support of 25
unrolling loops

as of z/OS V1R7 XL C/C++ 71
USEPCH compiler option

as of z/OS V1R2 C/C++ 50
user exits

as of z/OS V1R5
CEEBDATX 32

CEEBDATX 25
CEEBXITA library module 25
CEECDATX 115
IBMBXITA library module 25

user interface
ISPF 123
TSO/E 123

user name spaces
pre-OS/390 modules 27

user-defined conversions
avoiding exceptions 111

USERLIB compiler option
alternative as of z/OS V1R2 C/C++ 18
as of z/OS V1R2 C/C++

alternative 50
USERPATH compiler option

alternative as of z/OS V1R2 C/C++ 18
as of z/OS V1R2 C/C++

alternative 50
using directive

as of z/OS V1R10 XL C++ 103

V
variable mode

as of z/OS V1R9
C99 compliance 95

variables
as of z/OS V1R7 XL C/C++

binding OS/390 modules 59
reentrant 59

very large applications
as of z/OS V1R9 XL C/C++

IPA link step 57
macro redefinition 57

IPA Link step
as of z/OS V1R8 XL C 21, 83

virtual functions
declaring and calling

as of z/OS V1R6 C/C++ 71

W
WSIZEOF compiler option

pre-OS/390 source code 14

X
XL C DB2 coprocessor 119
XL C/C++ compiler invocations

as of z/OS V1R6 C/C++ 81
xlc configuration file

as of z/OS V1R7 XL C/C++
customizing 77

xlc invocation
as of z/OS V1R7 XL C/C++

resolution of conflicts between options and
pragmas 77

xlc utility
and TEMPINC 81
as of z/OS V1R10

return-code processing 82
as of z/OS V1R7 XL C/C++ 82
source code changes 82
xlc command 81
xlC command 81
xlc++ command 81

XPLINK compiler option
as of z/OS V1R6 C/C++ 81

XPLINK runtime option
C/370 equivalent 33

Z
z/OS Basic Skills Knowledge Center xix
z/OS UNIX System Services

as of z/OS V1R8 XL C/C++
ulimit command 53, 83

z/OS V1R10
AMODE 64 applications 91
diagnostic changes

potential linkage issues 74
HEAPPOOLS runtime option 91
listings show compiler substitution variables 73
namespace pollution errors 119
PTF UK31348 74
requesting DB2 services 119
return-code processing

options 82
SQL coprocessor-based compilations

152 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

z/OS V1R10 (continued)
SQL coprocessor-based compilations (continued)

macro definition check, performing 120
macro undefinition and redefinition 120

xlc utility
return-code processing 82

z/OS V1R10 XL C/C++
#pragma comment and ASCII 51
ASCII users 51

z/OS V1R10 XL C++
name lookups 103
using directive 103

z/OS V1R11
_POSIX_C_SOURCE macro 84
C++11 109
corrections in escape sequence encoding 74
extendedfriend 108
feature testing 84
friend declaration 108
header files 84
LANGLVL(EXTENDED0X) compiler option 79
LANGLVL(EXTERNTEMPLATE) compiler option 108
M compiler option 80
macro redefinitions 108
WARN0X compiler option 109

z/OS V1R12
LANGLVL(AUTOTYPEDEDUCTION) compiler option 106
LANGLVL(C99LONGLONG) compiler option 107
LANGLVL(C99PREPROCESSOR) compiler option 107
LANGLVL(DECLTYPE) compiler option 107
LANGLVL(DELEGATINGCTORS) compiler option 107
LANGLVL(EXTENDEDINTEGERSAFE) compiler option
108
LANGLVL(INLINENAMESPACE) compiler option 108
LANGLVL(STATIC_ASSERT) compiler option 109
LANGLVL(VARIADICTEMPLATES) compiler option 109
RESTRICT 80
SEVERITY 80

z/OS V1R13
CHECKOUT compiler option 76
earliest release that can be targeted 80
FLAG compiler option 78
GENASM compiler option 78
TARGET compiler option 80

z/OS V1R13 XL C/C++
ARGPARSE compiler option 51
DSAUSER compiler option 77
TEMPLATEDEPTH compiler option 80

z/OS V1R2
#pragma enum 52
#pragma variable 56
ambiguous overloads 110
ANSI-aliasing rule 51
as of z/OS V1R2 C/C++

HALTONMSG compiler option 51
batch processing

alternative 21
SYSLIB concatenation 21

C support 18
C++ exception handling 105
CC EXEC invocation changes 25
CHECKOUT(CAST) compiler option 51
compiler options, no longer supported 50
cv-qualification 105

z/OS V1R2 (continued)
DECK compiler option 17
destruction of statically initialized objects before and
after ISO/IEC 14882:2003(E) compliance 103
DIGRAPH compiler option

default 52
enumeration types

controlling size of 18
enumeration types, controlling size of 52

ENUMSIZE() compiler option 52
friend declarations in class member lists 105
friend declarations, visibility of 105
HWOPTS compiler option 18
implicit integer types and Standard C++ compliance 104
include files, finding 18
INFO compiler option 18
INLINE compiler option

defaults 52
ISO standard C++ compliance 99
LANGLVL(COMPAT) compiler option 17
LANGLVL(OLDMATH) compiler option 110
library file searches 21
OMVS compiler option 18
pack(2) 71
pointer casting 51
ROSTRING compiler option 55, 56
scoping for loops 104
SRCMSG compiler option 18
STACK runtime option 34
Standard C++ compliance

C++ class access errors 109
STATICINLINE compiler option 56
syntax error with array new 112
SYSLIB compiler option 18
SYSLIB DD cards to remove 21
twobyte packed data alignment 71
unexpected C++ output 71
USERLIB compiler option 18

z/OS V1R3
#pragma map 26
C++ class names 26
external variable names 26
name mangling 26

z/OS V1R5
_EDC_PUTENV_COPY environment variable 70
abnormal termination exit routine 32
batch processing 32
CEEBDATX 32
changes to putenv() 93
compiling OS/390 applications 57
destruction of statically initialized objects before and
after ISO/IEC 14882:2003(E) compliance 103
JCL procedures

Language Environment customization 84
locale name 55
OPTIMIZE compiler option 55
POSIX compliance 70, 93
putenv() function 70
requesting DB2 services 119

z/OS V1R5 C/C++, earlier than
JCL procedures

Language Environment customization 84
z/OS V1R6

_DEBUG_FORMAT environment variable 61, 81, 88

Index 153

z/OS V1R6 (continued)
@euro locale 94
@preeuro locale 94
alignment incompatibilities

between object models 88
ARCHITECTURE level and overflow processing 51
batch processing 94
binding OS/390 modules 61
C support 18, 52
c89 utility 61, 81, 88
c89 utility and _DEBUG_FORMAT environment variable
49
CHECKOUT compiler option 52
COMPAT compiler option 81
data types 54
declaring and calling virtual functions 71
dynamic binding 71
EEC default currency 94
INFO compiler option 18, 52
interlanguage calls (ILC)

with #pragma pack(2) 88
ISO standard C++ compliance

determining level supported by compiler 99
Language Environment customization 94
LC_MONETARY information 94
listings 61
LOCALDEF utilities 94
long long 54
LP64 compiler option 81
MVS batch interface 94
object module incompatibilities

with #pragma pack(2) 88
pre-OS/390 modules and language libraries 27
pre-OS/390 modules and user name spaces 27
requesting DB2 services 119
setlocale() function 94
TARGET compiler option 81
TEST compiler option 20, 56
TSO localedef utility interface 94
xlc command 81
xlC command 81
xlc++ command 81
XPLINK compiler option 81

z/OS V1R7
_OPEN_SYS_SOCK_IPV6 macro 84
_OPEN_SYS_SOCK_IPV6 macro and netinet/in.h

new definitions exposed 69
–qcpluscmt command option

when to override 82
#pragma unroll() 71
C99 support 70
CICS statement translation options 115
CMDOPTS compiler option 77
comments, using 82
enumeration types

controlling size of 18
ENUMSIZE(SMALL) 77
feature testing 84
for loops 71
header files 84
LANGLVL compiler option

and macro redefinitions 78, 79
LANGLVL(ANSI) compiler option 53
LANGLVL(EXTENDED) compiler option 54

z/OS V1R7 (continued)
LANGLVL(LONGLONG) compiler option 70
LANGLVL(SAA) compiler option 53
LANGLVL(SAA2) compiler option 53
Language Environment services 84
macro redefinition 76
macro redefinitions

LANGLVL compiler option 78, 79
numeric conversion functions 70
protected enumeration types in system header files 77
reentrant variables with NORENT

binding OS/390 modules 59
JCL procedures 59

requesting DB2 services 119
resolution of conflicts between options and pragmas 77
Standard C++ compliance 68
TARGET compiler option 70
under CICS 116
unrolling loops 71
xlc configuration file 77

z/OS V1R8
_PVERSION environment variable 88
64-bit processing 78
64-bit virtual memory 53
binder errors

namespace pollution 25, 87
c89 utility

binder, invoking 59
c89 utility and COMPAT binder option 88
errors binding earlier z/OS C/C++ programs

namespace pollution 87
errors binding pre-OS/390 programs

namespace pollution 25
GONUMBER compiler option 78
internal timing algorithm 93
IPA compiler option 83
IPA link step 83
IPA(LINK)

64-bit memory 83
MEMLIMIT default value 83

IPA(LINK) compiler option
link step defaults 52

JCL procedures 53
library functions 68
memory requirements 83
performance, improving

very large applications 83
processor release 68
requesting DB2 services 119
setting MEMLIMIT value 53
targeting an earlier release 88
thread processing 68

z/OS V1R9
__LOCALE__ macro 54
_ICONV_MODE environment variable

user-defined conversion tables 83
_XOPEN_SOURCE_EXTENDED macro 84
<net/if.h> header file 84
array index definitions 75
as of z/OS V1R9 XL C/C++

default region size 82
batch processing and name mangling

ILP32 compiler option 83
C99 support 95

154 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

z/OS V1R9 (continued)
CICS processing

binary converter tables 117
HFS 117
iconv() changes and CEECCSD.COPY and
CEECCSDX.COPY files 117
Load Module Analyzer (LMA) 117
Unicode converters 117
using AFP registers 117

Communications Server information 68
default daylight saving time 93, 94
DFP

size modifiers 69, 92
diagnostic changes

potential linkage issues 74
error messages

name lookup exceptions 75
feature test macros and system header files 69
feature testing 84
FLOAT(IEEE) compiler option 95
getnameinfo() function 68
IEEE 754 interface declarations 69
IEEE754 math functions 95
ILP32 compiler option

batch processing and name mangling 83
initialization incompatibility with C/370 modules 35
IPA compiler option 57
ISO standard C++ compliance 99
JCL procedures

assembly listings 76
user-defined conversion tables 83

Language Environment services 84
library functions 68
LOCALE compiler option

and macro redefinitions 79
locale name 54
macro redefinitions

LOCALE compiler option 79
PTF UK31348 74
pthread_yield() function 68
region size, default 57
requesting DB2 services 119
scope information 68
Standard C++ compliance 68
symbolic names 75
templates 75
variable mode 95

z/OS V2R1
ARCHITECTURE level and SYSSTATE ARCHLVL
statement 51
C++11 compiler option 106
IPA compiler option 78
LANGLVL(C1XNORETURN) compiler option 107
LANGLVL(CONSTEXPR) compiler option 107
LANGLVL(DEFAULTANDDELETE) compiler option 107
LANGLVL(EXPLICITCONVERSIONOPERATORS) compiler
option 108
LANGLVL(EXTC1X) compiler option 79
LANGLVL(REFERENCECOLLAPSING) compiler option
108
LANGLVL(RIGHTANGLEBRACKET) compiler option 109
LANGLVL(RVALUEREFERENCES) compiler option 109
LANGLVL(SCOPEDENUM) compiler option 109
M compiler option 54

z/OS V2R2
ARCHITECTURE default 51
TARGET compiler option 56
TUNE default 56

zFS files, support of 57

Index 155

156 z/OS: z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer

IBM®

Product Number: 5650-ZOS

GC14-7306-40

	Contents
	About this document
	z/OS XL C/C++ on the World Wide Web
	Where to find more information
	z/OS Basic Skills in IBM Knowledge Center

	Technical support
	How to send your comments to IBM
	If you have a technical problem

	Part 1. Introduction
	Chapter 1. New migration issues for z/OS V2R4 XL C/C++
	Chapter 2. Program migration checklists
	Before you start your migration
	When you are compiling code
	When you are binding program objects or load modules
	When you are running an application
	Tools that facilitate your migration
	The Edge Portfolio Analyzer

	Applicability of product information

	Part 2. Migration of pre-OS/390 C/C++ applications to z/OS V2R4 XL C/C++
	Chapter 3. Source code compatibility issues with pre-OS/390 C/C++ programs
	Removal of IBM Open Class Library support
	Source code modifications necessitated by changes in runtime library
	The #pragma runopts directive

	Resource allocation and memory management issues
	The sizeof operator applied to a function return type
	A user-defined global new operator and array new

	Addressing incompatibilities
	C/370 V2 main program and main entry point
	Pointer incompatibilities

	Data type incompatibilities
	Assignment restrictions for packed structures and unions
	DSECT header files and packed structures

	Changes required by programs with interlanguage calls
	Explicit program mask manipulations
	Assembler source code changes in System Programming C (SPC) applications built with EDCXSTRX

	Internationalization incompatibilities
	Support of alternate code points

	Chapter 4. Compile-time issues with pre-OS/390 C/C++ programs
	Changes in compiler listings, messages, and return codes
	Macro redefinitions might result in severe errors

	Changes in compiler options
	Compiler options that are no longer supported
	DECK compiler option
	LANGLVL(COMPAT) compiler option
	OMVS compiler option
	SRCMSG compiler option
	SYSLIB, USERLIB, SYSPATH and USERPATH compiler options

	Compiler options that were introduced in OS/390 C/C++ or later
	ENUMSIZE compiler option

	Changes in compiler option functionality
	HALT compiler option
	HWOPTS compiler option
	INFO compiler option
	INLINE compiler option
	LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2) compiler option and macro redefinitions
	LANGLVL(EXTENDED) compiler option and macro redefinitions
	LOCALE compiler option
	OPTIMIZE optimization level mapping
	SEARCH and LSEARCH compiler options
	SQL compiler option and SQL EXEC statements
	TEST compiler option

	Changes that affect compiler invocations
	IPA compiler option and very large applications
	Customized JCL and the CXX format
	CBCI and CBCXI procedures in JCL

	Changes that affect SYSLIB DD cards
	Change in SCLBH logical record length

	Chapter 5. Bind-time migration issues with pre-OS/390 C/C++ programs
	Library release level in use
	Binder invocation changes
	Impact of changes to CC EXEC invocation syntax

	Changes due to customizations of the runtime environment
	User-developed exit routines
	Abnormal termination exit routines and dump formats

	Incompatibilities in external references
	Requirements for relinking C/370 modules that invoke Debug Tool
	C/370 modules with interlanguage calls (ILC)
	Interlanguage calls between assembler and PL/I language modules
	Function calls between C and Fortran modules
	Function calls to and from COBOL modules
	Compatibility with earlier and later releases
	Impact of changes in packaging of language libraries
	Linkage editor control statements for modules that contain calls to COBOL routines
	Programs that require the C370 Common Library environment

	Chapter 6. Runtime migration issues with pre-OS/390 C/C++ applications
	Retention of pre-OS/390 runtime behavior
	Runtime library messages
	Return codes and messages
	Error conditions that cause runtime messages
	Prefixes of perror() and strerror() messages
	Language specification for messages
	User-developed exit routines

	Changes that affect customized JCL procedures
	Changes in data set names
	Arguments that contain a slash
	Differences in standard streams
	Dump generation

	Changes in runtime option specification
	Runtime options lists
	Obsolete runtime options
	Return codes for abnormal enclave terminations
	Abnormal terminations and the TRAP runtime option
	Default heap allocations
	HEAP parameter specification
	Default stack allocations
	STACK parameter specification
	XPLINK downward-growing stack and the THREADSTACK runtime option

	Runtime library compatibility issues with pre-OS/390 applications
	Changes to the putenv() function and POSIX compliance
	UCMAPS and UCS-2 and UTF-8 converters
	Common library initialization compatibility issues with C/370 modules
	Initialization schemes
	Special considerations: CEEBLIIA and IBMBLIIA

	Internationalization issues in POSIX and non-POSIX applications

	Hardware and OS exceptions
	Decimal overflow exceptions
	SIGTERM, SIGINT, SIGUSR1, and SIGUSR2 exceptions
	Unexpected SIGFPE exceptions

	Resource allocation and memory management migration issues
	The realloc() function

	Chapter 7. Input and output operations compatibility
	Migration issues when opening pre-OS/390 files
	Migration issues when writing to pre-OS/390 files
	Changes in DBCS string behavior
	Changes in stdout and stderr file positioning
	Behavior changes when closing and reopening ASA files
	Changes in values returned by the fldata() function
	VSAM I/O changes
	Change in allocation of VSAM control blocks and I/O buffers

	Terminal I/O changes

	Part 3. Migration of OS/390 C/C++ applications to z/OS V2R4 XL C/C++
	Chapter 8. Source code compatibility issues with OS/390 programs
	Overflow processing and code modifications
	References to class libraries that are no longer shipped

	Chapter 9. Compile-time migration issues with OS/390 programs
	Changes in compiler listings and messages
	Debug format specification
	Language specification for compiler messages
	Optimization level mapping and listing content
	Macro redefinitions and error messages

	Changes in compiler options
	Compiler options that are no longer supported
	ARCHITECTURE compiler option
	ARCHITECTURE level and overflow processing
	ARCHITECTURE level and Metal C file-scope header SYSSTATE ARCHLVL statement

	ARGPARSE compiler option with Metal
	ASCII compiler option
	CHECKOUT(CAST) compiler option
	DIGRAPH compiler option
	ENUMSIZE compiler option
	INFO compiler option
	INLINE compiler option
	IPA(LINK) compiler option
	IPA Link step default changes
	The IPA(LINK) option and exploitation of 64-bit virtual memory
	IPA object module binary compatibility

	LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2) compiler option and macro redefinitions
	LANGLVL(EXTENDED) compiler option and macro redefinitions
	LANGLVL(LONGLONG) compiler option
	LOCALE compiler option
	M compiler option
	OPTIMIZE compiler option
	NORENT compiler option
	ROSTRING compiler option
	ROCONST compiler option
	STATICINLINE compiler option
	SQL compiler option and SQL EXEC statements
	TARGET compiler option
	TEST compiler option
	TUNE compiler option

	Changes in IBM data set names
	Introduction of 1998 Standard C++ support
	Changes that affect performance and optimization
	Addition of the #pragma reachable and #pragma leaves directives

	Changes that affect customized JCL procedures
	Potential increase in memory requirements
	JCL CBCI and CBCXI procedures and the variable CLBPRFX
	Syntax to invoke the CC command

	Removal of Model Tool support

	Chapter 10. Bind-time migration issues with OS/390 C/C++ programs
	Reentrant variables when the compiler option is NORENT

	Chapter 11. Runtime migration issues with OS/390 C/C++ applications
	Retention of OS/390 runtime behavior
	Changes to the putenv() function and POSIX compliance

	Debug format and translation of the c89 -g flag option
	Language Environment customization issues
	Change in allocation of VSAM control blocks

	Chapter 12. Migration issues resulting from class library changes between OS/390 C/C++ applications and Standard C++ library
	Function calls to different libraries
	Removal of IBM Open Class Library support
	Removal of SOM support
	Removal of Database Access Class Library utility
	Migration of programs with calls to UNIX System Laboratories I/O Stream Library functions

	Part 4. Migration of earlier z/OS C/C++ applications to z/OS V2R4 XL C/C++
	Chapter 13. Source code compatibility issues with earlier z/OS C/C++ programs
	Function calls to different libraries
	References to class libraries that are no longer shipped
	Migration from UNIX System Laboratories I/O Stream Library to Standard C++ I/O Stream Library
	Standard C++ compliance compatibility issues
	Use of XL C/C++ library functions
	Timing of processor release by the pthread_yield() function
	New information returned by the getnameinfo() function
	Feature test macros and system header files
	Potential need to include _Ieee754.h
	New definitions exposed by use of the _OPEN_SYS_SOCK_IPV6 macro
	Required changes to fprintf and fscanf strings %D, %DD, and %H
	Changes to the putenv() function and POSIX compliance
	Required changes to fprintf and fscanf strings due to new specifiers for vector types

	C99 support of long long data type
	Use of pragmas
	Application of #pragma unroll() as of z/OS V1R7 XL C/C++
	Unexpected C++ output with #pragma pack(2)

	Virtual function declaration and use

	Chapter 14. Compile-time migration issues with earlier z/OS C/C++ programs
	Changes in compiler listings, messages, and return codes
	Appearance of compiler substitution variables
	Corrections in escape sequence encoding
	Function offsets in source listing
	Diagnostic refinement in identification of linkage issues (C++ only)
	References to UNIX System Services file names
	Non-compliant array index raises an exception
	Unexpected name lookup error messages with template use
	Width of mnemonic in assembly listings
	Macro redefinitions and error messages

	Changes in compiler option functionality
	Option behavior change when processing multiple suboptions
	CHECKOUT compiler option
	CMDOPTS compiler option and conflict resolution
	DFP compiler option and earlier floating-point applications
	DSAUSER compiler option
	ENUMSIZE(SMALL) and protected enumeration types in system header files
	FLAG compiler option
	FLOAT(AFP) suboptions for applications that access CICS data
	GENASM compiler option
	GONUMBER compiler option and LP64 support
	IPA compiler option
	LANGLVL(ANSI), LANGLVL(SAA), or LANGLVL(SAAL2) compiler option and macro redefinitions
	LANGLVL(EXTC1X) compiler option
	LANGLVL(EXTENDED) compiler option and macro redefinitions
	LANGLVL(EXTENDED0X) compiler option
	LOCALE compiler option
	M compiler option
	RESTRICT option
	SEVERITY option
	SQL compiler option and SQL EXEC statements
	TARGET compiler option
	TEMPLATEDEPTH compiler option

	Changes that affect compiler invocations
	Changes that affect use of the c89 command
	Debug format specification

	Changes that affect use of the xlc utility
	Exposure of build problems and xlc utility
	When C++ style comments are the default

	Changes that affect JCL procedures
	User-defined conversion tables and iconv() functions
	ILP32 compiler option and name mangling
	IPA(LINK) compiler option and very large applications
	IPA(LINK) compiler option and exploitation of 64-bit virtual memory

	JCL that runs pre-z/OS V1R5 C/C++ programs
	Compiler options that manage Standard C++ compliance
	Impact of recompiling applications that include <net/if.h> with the _XOPEN_SOURCE_EXTENDED feature test macro
	Impact of recompiling applications that include the pselect() interface
	Impact of recompiling with the _OPEN_SYS_SOCK_IPV6 macro
	Impact of recompiling code that relies on math.h to include IEEE 754 interfaces

	Chapter 15. Bind-time migration issues with earlier z/OS C/C++ programs
	Unexpected "missing symbol" error (C++ only)
	Program modules from an earlier release
	Namespace pollution binder errors
	c89 COMPAT binder option default and programs from an earlier release

	Alignment incompatibilities between object models
	Alignment incompatibilities between XL C and XL C++ output with #pragma pack(2)

	Debug format and c89 -g flag option translation
	argc argv parsing support for Metal C programs

	Chapter 16. Runtime migration issues with earlier z/OS C/C++ applications
	Earlier AMODE 64 applications
	HEAPPOOLS runtime option no longer ignored in all AMODE 64 applications

	Customized runtime libraries
	Failure of authentication process
	Retention of previous runtime behavior
	Unexpected output from fprintf() or fscanf()
	IEEE754 math functions
	Internal timing algorithm specification
	Daylight saving time definition
	Changes to the putenv() function and POSIX compliance

	Internationalization issues
	Default daylight saving time change
	EEC default currency update
	Movement of LOCALDEF utilities to new data sets

	Changes in math library functions
	Changes in floating-point support
	Hexadecimal floating-point notation
	Floating-point special values

	Changes in allocation of VSAM control blocks
	Changes to st_mode attribute of AF_UNIX socket files
	Changes to strfmon() output
	Changes to structure t_opthdr in xti.h
	Changes to getting group or user database entry
	Removal of conversion table source code

	Part 5. ISO Standard C++ compliance migration issues
	Chapter 17. Language level and your Standard C++ compliance objectives
	Chapter 18. Changes that affect Standard C++ compliance of language features
	Unqualified name lookups and the using directive
	Order of destruction for statically initialized objects
	Implicit integer type declarations
	Scope of for-loop initializer declarations
	Visibility of friend declarations
	Migration of friend declarations in class member lists
	cv-qualifications when the thrown and caught types are the same
	Compiler options that are introduced in C++11 standard
	LANGLVL(AUTOTYPEDEDUCTION) compiler option (C++11)
	LANGLVL(C1XNORETURN) compiler option (C++11)
	LANGLVL(C99LONGLONG) compiler option (C++11)
	LANGLVL(C99PREPROCESSOR) compiler option (C++11)
	LANGLVL(CONSTEXPR) compiler option (C++11)
	LANGLVL(DECLTYPE) compiler option (C++11)
	LANGLVL(DEFAULTANDDELETE) compiler option (C++11)
	LANGLVL(DELEGATINGCTORS) compiler option (C++11)
	LANGLVL(EXPLICITCONVERSIONOPERATORS) compiler option (C++11)
	LANGLVL(EXTENDEDFRIEND) compiler option (C++11)
	LANGLVL(EXTENDEDINTEGERSAFE) compiler option (C++11)
	LANGLVL(EXTERNTEMPLATE) compiler option (C++11)
	LANGLVL(INLINENAMESPACE) compiler option (C++11)
	LANGLVL(REFERENCECOLLAPSING) compiler option (C++11)
	LANGLVL(RIGHTANGLEBRACKET) compiler option (C++11)
	LANGLVL(RVALUEREFERENCES) compiler option (C++11)
	LANGLVL(SCOPEDENUM) compiler option (C++11)
	LANGLVL(STATIC_ASSERT) compiler option (C++11)
	LANGLVL(VARIADICTEMPLATES) compiler option (C++11)
	WARN0X compiler option (C++11)

	Errors due to changes in compiler behavior
	C++ class access errors
	CCN5413 exception
	CCN5193 exception

	Exceptions caused by ambiguous overloads
	Exceptions caused by user-defined conversions
	Issues caused by the use of incomplete types in exception-specifications
	Syntax errors with array new

	Part 6. Migration issues for C/C++ applications that use other IBM products
	Chapter 19. Migration issues with earlier C/C++ applications that run CICS statements
	Migration of CICS statements from pre-OS/390 C/C++ applications
	CICS statement translation options
	HEAP option used with the interface to CICS
	User-developed exit routines
	Multiple libraries under CICS
	CICS abend codes and messages
	Default option for ABTERMENC changed to ABEND

	CICS reason codes
	Standard stream support under CICS
	Changes in stderr output under CICS
	Transient data queue names under CICS

	Migration of CICS statements from earlier XL C/C++ applications
	CICS TS V4.1 with "Extended MVS Linkage Convention"
	Customized CEECCSD.COPY and CEECCSDX.COPY files and iconv() changes
	Renaming direct converters
	Direct converters for 31-bit base code
	Direct converters for XPLINK processing
	Direct converters for 64-bit base code

	Renaming indirect binary converter tables
	Renaming HFS indirect binary converter tables

	Chapter 20. Migration issues with earlier C/C++ applications that use DB2
	Namespace violations and SQL coprocessor-based compilations
	Example: Performing a macro definition check
	Example: Explicitly undefining and redefining a macro

	Potential need to specify DBRMLIB with the SQL option

	Appendix A. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Standards
	Trademarks

	Bibliography
	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

